The overarching goal of this Program is to understand the molecular mechanisms that regulate cell activation. Activation of lymphocytes through specific recognition of antigen poses narrowly balanced benefits and risks, and hence is subject to tight regulation. We know that some signals serve to modulate or terminate activation, while other signals induce cell unresponsiveness or death. The molecular mechanisms underlying the regulatory processes with different outcomes are unknown and largely undefined. The Program consists of five highly interactive projects involving six investigators, from five different departments of the University. These investigators bring innovative technology and incisive ideas to bear on the problem of lymphocyte activation and its regulation. The five projects cover a range of stimuli, cues and outcomes that result in various states of T cell activation or unresponsiveness, from the initial events of antigen recognition to the regulation of transcription. The projects cover a biological scale from nano-scale molecular interactions to whole cell and animal models. The program addresses the following areas: 1) Influence of TCR spatial organization on T cell responses, 2) Altered molecular architecture at the Immunological Synapse and T cell anergy, 3) Sprouty 1 as a novel inhibitor of T cell activation, 4) Regulation of calcium signaling in T cells by TFII-I, 5) Regulation of NF-kB by TCR and costimulatory signaling. These five projects support the overall goal of understanding the molecular mechanisms regulating cell activation. The program has developed out of years of interaction among a core group of investigators who in the last two years have been joined by new colleagues. Interactions between investigators are flourishing. The extent of synergy between group members is apparent from the detailed project descriptions. We want to understand the mechanisms of T cell responses to antigen. Understanding these mechanisms will lead to ways of turning up, or turning off immune responses that are helpful or harmful.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
3P01AI072677-02S1
Application #
7868850
Study Section
Special Emphasis Panel (ZAI1-PA-I (J1))
Program Officer
Chiodetti, Lynda
Project Start
2009-09-17
Project End
2011-08-31
Budget Start
2009-09-17
Budget End
2011-08-31
Support Year
2
Fiscal Year
2009
Total Cost
$355,465
Indirect Cost
Name
Johns Hopkins University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Schappert, Anna; Schneck, Jonathan P; Suarez, Lauren et al. (2018) Soluble MHC class I complexes for targeted immunotherapy. Life Sci 209:255-258
Hickey, John W; Isser, Ariel Y; Vicente, Fernando P et al. (2018) Efficient magnetic enrichment of antigen-specific T cells by engineering particle properties. Biomaterials 187:105-116
Bettencourt, Ian A; Powell, Jonathan D (2017) Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. J Immunol 198:999-1005
Kosmides, A K; Meyer, R A; Hickey, J W et al. (2017) Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials 118:16-26
Tiper, Irina V; Temkin, Sarah M; Spiegel, Sarah et al. (2016) VEGF Potentiates GD3-Mediated Immunosuppression by Human Ovarian Cancer Cells. Clin Cancer Res 22:4249-58
Pollizzi, Kristen N; Sun, Im-Hong; Patel, Chirag H et al. (2016) Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol 17:704-11
Schütz, Christian; Varela, Juan Carlos; Perica, Karlo et al. (2016) Antigen-specific T cell Redirectors: a nanoparticle based approach for redirecting T cells. Oncotarget 7:68503-68512
Pollizzi, Kristen N; Waickman, Adam T; Patel, Chirag H et al. (2015) Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition. PLoS One 10:e0121710
Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael (2015) A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale. Prostaglandins Leukot Essent Fatty Acids 100:1-4
Makowski, Stefanie L; Wang, Zhaoquan; Pomerantz, Joel L (2015) A protease-independent function for SPPL3 in NFAT activation. Mol Cell Biol 35:451-67

Showing the most recent 10 out of 37 publications