People over the age of 65 comprise the fastest growing, but least healthy, segment of the U.S. population. This age-group displays an exaggerated vulnerability to toxins, drug interactions, and oxidative stress, which collectively makes age itself the leading risk factor for chronic diseases and mortality. In turn, these morbidities severely limit the quality of life and add enormously to healthcare costs, which are soaring along with the """"""""graying of America"""""""". Why cellular defenses in the elderly cannot rise to meet stress challenges is not known and represents a significant obstacle to maintaining healthy aging. To overcome this problem, Americans take antioxidants or complementary medicines (CAM) in attempts to prevent chronic age-related diseases. Unfortunately, these supplements have, so far, failed to improve elder health. In retrospect, many of these CAM agents may be incomplete protectants as they cannot sufficiently compensate for diminished endogenous antioxidants and antioxidant gene expression in the cells and tissues of the aged. Thus, a better approach for healthy aging would be to maintain endogenous stress resistance mechanisms. To this end, we found that feeding old rats f?-a-lipoic acid (R-LA) reversed the age-related susceptibility to oxidative insults by preventing the loss in endogenous antioxidant defenses. R-LA affords this protection not as a free radical scavenger, but by maintaining the activity of Nrf2, a transcription factor that governs the expression of over 100 antioxidant and detoxification genes containing the Antioxidant Response Element (ARE). However, despite finally identifying a molecular lesion involved in lost stress resistance with age, the precise mechanism(s) how R-LA maintains these vital cellular defenses and also whether long-term dietary R-LA supplementation is an effective complementary medicine to lower risk for age-associated pathologies is not known. Thus, the objectives of the present application are to define the precise mechanism(s) by which R-LA reverses decay in Nrf2-dependent stress resistance in aged rats and lowers vulnerability to toxicological insults. We hypothesize that R-LA works on the two most important regulatory mechanisms governing Nrf2 activity, namely, pathways affecting nuclear Nrf2 levels;and its interaction with partner proteins at the gene level. We thus propose that R-LA is a novel healthy aging medicine that prevents loss of stress response and the adverse health effects this decline engenders. These hypotheses will be explored in three Specific Aims, namely, to: 1) Determine the mechanism(s) through which R-LA reverses the decline in nuclear Nrf2 levels with age: 2) Determine the mechanism(s) through which R-LA increases ARE-mediated gene transcription with age: and 3) Assess the benefits of R-LA to increase """"""""healthspan"""""""" by maintaining Nrf2-dependent stress response systems with age. Following completion of the proposed experiments, we anticipate that, for the first time, a nutritive therapy for age-dependent loss of stress resistance will have been developed, which may be exploitable as a CAM adjunct to extend human """"""""healthspan"""""""".

National Institute of Health (NIH)
National Center for Complementary & Alternative Medicine (NCCAM)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAT1-SM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
United States
Zip Code
Williams, Jared R; Trias, Emiliano; Beilby, Pamela R et al. (2016) Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol Dis 89:1-9
Thomas, Nicholas O; Shay, Kate P; Kelley, Amanda R et al. (2016) Glutathione maintenance mitigates age-related susceptibility to redox cycling agents. Redox Biol 10:45-52
Smith, Eric J; Shay, Kate P; Thomas, Nicholas O et al. (2015) Age-related loss of hepatic Nrf2 protein homeostasis: Potential role for heightened expression of miR-146a. Free Radic Biol Med 89:1184-91
Zhang, Wei-Jian; Frei, Balz (2015) Astragaloside IV inhibits NF- ? B activation and inflammatory gene expression in LPS-treated mice. Mediators Inflamm 2015:274314
Keith, Dove; Finlay, Liam; Butler, Judy et al. (2014) Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age. Biochem Biophys Res Commun 450:324-9
Wei, Hao; Zhang, Wei-Jian; Leboeuf, Renee et al. (2014) Copper induces--and copper chelation by tetrathiomolybdate inhibits--endothelial activation in vitro. Redox Rep 19:40-8
Viera, Liliana; Radmilovich, Milka; Vargas, Marcelo R et al. (2013) Temporal patterns of tyrosine nitration in embryo heart development. Free Radic Biol Med 55:101-8
Gandelman, Mandi; Levy, Mark; Cassina, Patricia et al. (2013) P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway. J Neurochem 126:382-8
Rhoads, Timothy W; Williams, Jared R; Lopez, Nathan I et al. (2013) Using theoretical protein isotopic distributions to parse small-mass-difference post-translational modifications via mass spectrometry. J Am Soc Mass Spectrom 24:115-24
Franco, Maria Clara; Ye, Yaozu; Refakis, Christian A et al. (2013) Nitration of Hsp90 induces cell death. Proc Natl Acad Sci U S A 110:E1102-11

Showing the most recent 10 out of 76 publications