The program continues its focus on the human oncogenic herpesvirus, Epstein-Barr Virus (EBV) and Kaposi Sarcoma-associated Herpesvirus (KSHV) to identify the critical mechanisms by which these agents induce cancer and deregulate cell growth. To identify the mechanisms responsible for the oncogenic properties of these agents, the projects will characterize the basic molecular properties of viral proteins and their interactions with cellular proteins. In Project 1, Dr. Jack Griffith will continue his studies of the HSV recombinase complex consisting of ICP8 and UL12, and will apply the imaging skills that he has developed to analyze the structure of EBV and KSHV proteins and the association of KSHV proteins with DNA. Project 2 continues the study by Dr, Joseph Pagano on a novel deubiquitinase, UCHL1, whose expression is induced by EBV. This project will characterize the properties of this protein and in collaboration with Drs. Raab-Traub and Dittmer, determine its anti-growth properties in the mouse models that they have developed in Projects 4 and 5. Dr. Damania in Project 3 will develop systems to determine how KSHV induces angiogenesis, cell survival and migration. Drs. Raab-Traub and Dittmer in Projects 4 and 5 will develop and characterize the pathways that are essential for transformation and oncogenesis in transgenic murine models. The effects of EBV and KSHV on cellular miRNAs in the transgenic cancers will also be determined in both projects. A new core is requested, the Virogenomics Core, that will provide gene expression array support for all 5 projects on this program, profiling of the cellular miRNAs, and bioinformatic services for expression arrays and ChlP-Seq approaches.

Public Health Relevance

Epstein-Barr Virus and Kaposi Sarcoma Herpesvirus are linked to multiple human cancers. This proposal will study the viral proteins that are expressed in the cancers and that we have shown change the growth properties of cells inducing malignant properties. These experiments will identify how these proteins interact with cellular proteins to change their function. The requirement for these properties and the potential therapeutic benefit from blocking their functions will be tested in laboratory and animal models.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA019014-35
Application #
8686758
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Daschner, Phillip J
Project Start
1997-05-01
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
35
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
DeKroon, Robert M; Gunawardena, Harsha P; Edwards, Rachel et al. (2018) Global Proteomic Changes Induced by the Epstein-Barr Virus Oncoproteins Latent Membrane Protein 1 and 2A. MBio 9:
Nicholls, Thomas J; Nadalutti, Cristina A; Motori, Elisa et al. (2018) Topoisomerase 3? Is Required for Decatenation and Segregation of Human mtDNA. Mol Cell 69:9-23.e6
El-Mallawany, Nader Kim; Kamiyango, William; Villiera, Jimmy et al. (2018) Proposal of a Risk-Stratification Platform to Address Distinct Clinical Features of Pediatric Kaposi Sarcoma in Lilongwe, Malawi. J Glob Oncol :1-7
Selitsky, Sara R; Marron, David; Mose, Lisle E et al. (2018) Epstein-Barr Virus-Positive Cancers Show Altered B-Cell Clonality. mSystems 3:
Hosseinipour, Mina C; Kang, Minhee; Krown, Susan E et al. (2018) As-Needed Vs Immediate Etoposide Chemotherapy in Combination With Antiretroviral Therapy for Mild-to-Moderate AIDS-Associated Kaposi Sarcoma in Resource-Limited Settings: A5264/AMC-067 Randomized Clinical Trial. Clin Infect Dis 67:251-260
Lyons, Danielle E; Yu, Kuan-Ping; Vander Heiden, Jason A et al. (2018) Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 92:
Bigi, Rachele; Landis, Justin T; An, Hyowon et al. (2018) Epstein-Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 115:E11379-E11387
El-Mallawany, Nader Kim; Villiera, Jimmy; Kamiyango, William et al. (2018) Endemic Kaposi sarcoma in HIV-negative children and adolescents: an evaluation of overlapping and distinct clinical features in comparison with HIV-related disease. Infect Agent Cancer 13:33
Kobayashi, E; Aga, M; Kondo, S et al. (2018) C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere 3:
Hopcraft, Sharon E; Pattenden, Samantha G; James, Lindsey I et al. (2018) Chromatin remodeling controls Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog 14:e1007267

Showing the most recent 10 out of 324 publications