The objective of this Core is to provide phantoms of consistent quality to all projects in this program. The phantom development proposed in this core is aimed at developing a set of contrast-detail (CD) phantoms applicable to both sonographic and elastographic imaging. Standard methods and materials will be used in phantom construction. Ideally these phantoms will be thermally and temporally stable, and applicable to CD analysis in both sonography and elastography. Several options for combinations of materials for these phantoms are proposed. Construction of test samples is necessary to determine the best set of materials and the longevity and uniformity of the resulting phantoms. Following construction and measuring properties of test samples the best combination of materials will be determined, and CD phantoms will be constructed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA064597-03
Application #
5209365
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
1996
Total Cost
Indirect Cost
Thittai, Arun K; Yamal, Jose-Miguel; Ophir, Jonathan (2013) Small breast lesion classification performance using the normalized axial-shear strain area feature. Ultrasound Med Biol 39:543-8
Thittai, Arun K; Yamal, Jose-Miguel; Mobbs, Louise M et al. (2011) Axial-shear strain elastography for breast lesion classification: further results from in vivo data. Ultrasound Med Biol 37:189-97
Thittai, Arun K; Galaz, Belfor; Ophir, Jonathan (2011) Visualization of HIFU-induced lesion boundaries by axial-shear strain elastography: a feasibility study. Ultrasound Med Biol 37:426-33
Thittai, Arun K; Galaz, Belfor; Ophir, Jonathan (2010) Axial-shear strain distributions in an elliptical inclusion model: experimental validation and in vivo examples with implications to breast tumor classification. Ultrasound Med Biol 36:814-20
Patil, Abhay V; Krouskop, Thomas A; Ophir, Jonathan et al. (2008) On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study. Ultrasound Med Biol 34:1129-38
Garra, Brian Stephen (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255-68
Doyley, Marvin M; Srinivasan, Seshadri; Dimidenko, Eugene et al. (2006) Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process. Phys Med Biol 51:95-112
Hoyt, Kenneth; Forsberg, Flemming; Ophir, Jonathan (2006) Comparison of shift estimation strategies in spectral elastography. Ultrasonics 44:99-108
Hoyt, Kenneth; Forsberg, Flemming; Ophir, Jonathan (2006) Analysis of a hybrid spectral strain estimation technique in elastography. Phys Med Biol 51:197-209
Chandrasekhar, R; Ophir, J; Krouskop, T et al. (2006) Elastographic image quality vs. tissue motion in vivo. Ultrasound Med Biol 32:847-55

Showing the most recent 10 out of 74 publications