The objectives of this Core are to design four identical elastographic systems (common platform), and develop and test their specific hardware/software. Two of the new systems will be used to conduct a clinical study directed by Dr. Brian Garra. The two remaining systems will be used to continue the investigation and development of new algorithms for elastography. This common platform is essential for the program project. Another Core will provide full maintenance of the elastographic systems (software and hardware modifications as needed by the members of the program project). This Core will also develop elastographic phantoms with consistent quality for the projects and their sub-contractors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA064597-07
Application #
6347368
Study Section
Subcommittee G - Education (NCI)
Project Start
2000-08-28
Project End
2001-05-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2000
Total Cost
$279,757
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77225
Thittai, Arun K; Yamal, Jose-Miguel; Ophir, Jonathan (2013) Small breast lesion classification performance using the normalized axial-shear strain area feature. Ultrasound Med Biol 39:543-8
Thittai, Arun K; Yamal, Jose-Miguel; Mobbs, Louise M et al. (2011) Axial-shear strain elastography for breast lesion classification: further results from in vivo data. Ultrasound Med Biol 37:189-97
Thittai, Arun K; Galaz, Belfor; Ophir, Jonathan (2011) Visualization of HIFU-induced lesion boundaries by axial-shear strain elastography: a feasibility study. Ultrasound Med Biol 37:426-33
Thittai, Arun K; Galaz, Belfor; Ophir, Jonathan (2010) Axial-shear strain distributions in an elliptical inclusion model: experimental validation and in vivo examples with implications to breast tumor classification. Ultrasound Med Biol 36:814-20
Patil, Abhay V; Krouskop, Thomas A; Ophir, Jonathan et al. (2008) On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study. Ultrasound Med Biol 34:1129-38
Garra, Brian Stephen (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255-68
Doyley, Marvin M; Srinivasan, Seshadri; Dimidenko, Eugene et al. (2006) Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process. Phys Med Biol 51:95-112
Hoyt, Kenneth; Forsberg, Flemming; Ophir, Jonathan (2006) Comparison of shift estimation strategies in spectral elastography. Ultrasonics 44:99-108
Hoyt, Kenneth; Forsberg, Flemming; Ophir, Jonathan (2006) Analysis of a hybrid spectral strain estimation technique in elastography. Phys Med Biol 51:197-209
Chandrasekhar, R; Ophir, J; Krouskop, T et al. (2006) Elastographic image quality vs. tissue motion in vivo. Ultrasound Med Biol 32:847-55

Showing the most recent 10 out of 74 publications