Liquid-liquid phase separation (LLPS), i.e. the ability of molecules to condense into liquid-like assemblies, compartmentalizes cells extensively and impacts many fundamental biological processes. Whether LLPS is required for function in cells remains largely unclear. One challenge in answering this question arises from the difficulty in modulating the ability to form condensates without affecting the proteins' function, because assembly and function are often mediated by the same interactions. It is possible that smaller, discrete complexes are able to facilitate the function. We will address this question in enzymatically active condensates of the tumor suppressor speckle-type POZ protein (SPOP). SPOP recruits substrates to a ubiquitin ligase for ubiquitination. We have recently shown that SPOP and substrates undergo LLPS via weak, multivalent interactions, which result in their colocalization in active, membraneless organelles. Prostate cancer mutations blunt the ability of SPOP to phase separate with substrates, leading to their separate localization in cells, to increased substrate levels, and transformation of susceptible cells. We have experience in characterizing multivalent, disordered and phase-separating systems, and have built the necessary in vitro biophysical, biochemical and cell biological approaches and reagents to tackle the above question. In the proposed work, we will first modulate the material properties of condensates to test the requirement of fluidity for effective enzymatic activity. Second, we will test whether designed monovalent substrates, which bind at similar affinities as their multivalent counterparts, can be ubiquitinated effectively in the absence of phase separation. Third, we will make use of cancer mutations that modulate the formation of condensates and discrete complexes in opposite directions to test which of the two are the major players in SPOP function. Forth, we will address the critical question whether the weak interactions that typically mediate LLPS are able to compartmentalize cells specifically. We will use SPOP endometrial cancer mutations, which alter substrate specificity, to identify the strongest motifs responsible for the specificity alteration. The results will provide a conservative measure of specificity-mediating affinities in phase-separating systems. Our rigorous, multidisciplinary studies will significantly advance the knowledge of the structural determinants of specificity in weak SPOP/substrate interactions that drive phase separation, of the necessity of phase separation for SPOP-mediated substrate ubiquitination, and of the biophysical basis for the dysfunction of several SPOP cancer mutations that are distinct from the well-characterized prostate cancer mutations. The expected results will therefore provide conceptual insights into the role of phase separation in biological function. While we use rare cancer-associated mutations mainly as guides towards understanding of normal SPOP function, our work may ultimately help guide target validation for developing therapeutics against SPOP- related cancers.

Public Health Relevance

Recent advances have shown that biomolecules demix in cells and form several co-existing liquid phases, like oil and vinegar. This process is called liquid-liquid phase separation and compartmentalizes cells without membranes. The proposed research will test whether liquid-liquid phase separation is required for the function of the tumor suppressor SPOP, and how mutations found in prostate and endometrial cancer affect phase separation behavior.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Xu, Jianhua
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Mittag, Tanja; Parker, Roy (2018) Multiple Modes of Protein-Protein Interactions Promote RNP Granule Assembly. J Mol Biol 430:4636-4649
Martin, Erik W; Mittag, Tanja (2018) Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry 57:2478-2487
Wang, Ailin; Conicella, Alexander E; Schmidt, Hermann Broder et al. (2018) A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37:
Bouchard, Jill J; Otero, Joel H; Scott, Daniel C et al. (2018) Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Mol Cell 72:19-36.e8
Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing et al. (2017) An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nat Commun 8:13943
Pierce, Wendy K; Grace, Christy R; Lee, Jihun et al. (2016) Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination. J Mol Biol 428:1256-1271
Marzahn, Melissa R; Marada, Suresh; Lee, Jihun et al. (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254-75
Mittag, Tanja; Marzahn, Melissa R (2015) Protein disorder: wagging a tail at ubiquitin. Nat Chem Biol 11:7-8