Aberrant Hedgehog (Hh) signaling promotes brain, skin, prostate, endometrial, and gastric tract cancers. Amplification of the Hh transcriptional regulators, the Gli proteins, or mutations in SPOP, the substrate receptor of the ubiquitin ligase CRLSPOP, are associated with the development of cancer. SPOP recruits substrates such as Gli3 to CRLSPOP through linear SPOP-binding (SB) motifs. Surprisingly, our preliminary data show that Gli3 contains many weak SB motifs. SPOP has two oligomerization domains that together facilitate self-association into higher-order SPOP homo-oligomers, whose size depends on the SPOP concentration. Hence, Gli3 and SPOP are multivalent for each other, but the role of their high valency in regulating Gli3 ubiquitination is unclear. Interestingly, SPOP localizes t punctate structures in the nuclei, which we designate as nuclear SPOP bodies. These bodies can be detected by light microscopy and are likely facilitated by multivalent interactions. We hypothesize that (a) multivalent Gli3 and SPOP assemble into higher-order Gli3/SPOP complexes, which may form nuclear SPOP bodies in cells; and (b) multivalency generates ultrasensitivity of Gli3 recruitment and ubiquitination by CRLSPOP to protein concentration. Multivalency may be a general mechanism to regulate signaling but is poorly understood because of challenges inherent to the heterogeneous nature of higher-order complexes. We will use an innovative combination of biophysical, structural, biochemical, and cell biological techniques to: 1. Test the hypothesis that Gli3 and SPOP are highly multivalent by (a) determining the location and affinities of SB motifs in Gli3 and their sequence/affinity relationship; and (b) by elucidating how the two SPOP oligomerization domains synergize to promote higher-order SPOP homo-oligomers and how their valency depends on SPOP concentration. 2. Test the hypothesis that multivalency of Gli3 and SPOP functions in controlling ubiquitination by (a) determining the concentration-dependence of size and affinity of higher-order Gli3/SPOP complexes; and (b) by charting the ubiquitination efficiency towards Gli3 as a function of concentration and valency, and by determining the role of SPOP oligomerization and substrate binding for its localization in nuclear SPOP bodies. Improving our understanding of the regulation of Gli3 levels will provide important insight into Hedgehog signaling in health and disease. The proposed work will have significant impact for our understanding of newly identified cancer mutations in SPOP and for ubiquitous but understudied higher-order protein complexes.

Public Health Relevance

Recent large-scale cancer sequencing efforts have revealed new mutations in SPOP, a protein that normally controls levels of critical signaling proteins such as Gli3. SPOP and Gli3 bind each other in unusual, understudied large complexes. The proposed research will improve our understanding of how Gli3 levels are regulated normally, how these mechanisms are deregulated in prostate, endometrial and gastric tract cancers, and will provide important information for future development of new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM112846-02
Application #
8986797
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Smith, Ward
Project Start
2015-01-01
Project End
2019-12-31
Budget Start
2016-01-01
Budget End
2016-12-31
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Wang, Ailin; Conicella, Alexander E; Schmidt, Hermann Broder et al. (2018) A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37:
Bouchard, Jill J; Otero, Joel H; Scott, Daniel C et al. (2018) Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Mol Cell 72:19-36.e8
Mittag, Tanja; Parker, Roy (2018) Multiple Modes of Protein-Protein Interactions Promote RNP Granule Assembly. J Mol Biol 430:4636-4649
Martin, Erik W; Mittag, Tanja (2018) Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry 57:2478-2487
Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing et al. (2017) An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nat Commun 8:13943
Marzahn, Melissa R; Marada, Suresh; Lee, Jihun et al. (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254-75
Pierce, Wendy K; Grace, Christy R; Lee, Jihun et al. (2016) Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination. J Mol Biol 428:1256-1271
Mittag, Tanja; Marzahn, Melissa R (2015) Protein disorder: wagging a tail at ubiquitin. Nat Chem Biol 11:7-8