The tissue and Tumor Model Core Facility will prepare highly purified populations of effector cells from rodents and provide them as needed in collaborative experiments. Core A will facilitate the provision of human A-NK cell preparations as needed in Project 2, which will be prepared under the direction of Dr. Elaine Elder in the University of Pittsburgh Cancer Institute (UPCI) Immunologic Monitoring Laboratory (IML). The Core will also provide well-standardized in vivo tumor models, including tumor metastasis systems, for collaborative experiments with investigators in the project components. In collaboration with the leaders of each project, the tissue and Tumor Model Facility will establish models appropriate for the goals of each project and it will strive to carefully standardize these tumor models for reliability and consistency in experiments. These well- standardized models will provide the means to effectively test various protocols in an in vivo setting by investigators, in all projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA068550-03
Application #
6203352
Study Section
Project Start
1999-08-05
Project End
2000-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
3
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Huang, Ming Qiang; Basse, Per H; Yang, Qin et al. (2004) MRI detection of tumor in mouse lung using partial liquid ventilation with a perfluorocarbon-in-water emulsion. Magn Reson Imaging 22:645-52
Yang, Qin; Hokland, Marianne E; Bryant, John L et al. (2003) Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases. Int J Cancer 105:512-9
Brissette-Storkus, Cynthia S; Kettel, J C; Whitham, T F et al. (2002) Flt-3 ligand (FL) drives differentiation of rat bone marrow-derived dendritic cells expressing OX62 and/or CD161 (NKR-P1). J Leukoc Biol 71:941-9
Witham, Timothy F; Erff, Melanie L; Okada, Hideho et al. (2002) 7-Hydroxystaurosporine-induced apoptosis in 9L glioma cells provides an effective antigen source for dendritic cells and yields a potent vaccine strategy in an intracranial glioma model. Neurosurgery 50:1327-34; discussion 1334-5
Yang, Tianbing; Witham, Timothy F; Villa, Lorissa et al. (2002) Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62:2583-91
Carlos, T M (2001) Leukocyte recruitment at sites of tumor: dissonant orchestration. J Leukoc Biol 70:171-84
Okada, H; Villa, L; Attanucci, J et al. (2001) Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther 8:1157-66
Wahlberg, B J; Burholt, D R; Kornblith, P et al. (2001) Measurement of NK activity by the microcytotoxicity assay (MCA): a new application for an old assay. J Immunol Methods 253:69-81
Okada, H; Attanucci, J; Giezeman-Smits, K M et al. (2001) Immunization with an antigen identified by cytokine tumor vaccine-assisted SEREX (CAS) suppressed growth of the rat 9L glioma in vivo. Cancer Res 61:2625-31
Okada, H; Attanucci, J; Tahara, H et al. (2000) Characterization and transduction of a retroviral vector encoding human interleukin-4 and herpes simplex virus-thymidine kinase for glioma tumor vaccine therapy. Cancer Gene Ther 7:486-94

Showing the most recent 10 out of 14 publications