The principal objective of the Biostatistics Core will be to provide project investigators a centralized resource for biostatistics expertise. Statistical issues will be addressed at all levels of investigation: from the design of experiments, to the maintenance of data quality;and from conclusions based on formal hypothesis testing, to important leads discovered by thorough data exploration. In support of this objective, the specific aims of the Core include: 1. Collaborate with project investigators in the formulation of unambiguous hypotheses and hypothesis testing strategies, and in the design of experiments and population studies. 2. Provide support for all projects with: formal hypothesis tests in experimental data that ensure strong conclusions;exploratory analyses that lead to further experiments, refined hypotheses, or discoveries; frequent collaborative meetings about refining design, sample size, and resource use as evidence is accumulated;statistical modeling and sensitivity analyses of complex data;and visual displays of data that clarify conclusions and uncover leads. 3. Provide data transfer, management, and integration services that ensure high integrity, security and investigator accessibility. 4. Investigate new methodologies to directly address difficult data or design problems.

Public Health Relevance

The Biostatistics Core will provide critical support for planning and design of experiments and studies, statistical analyses and display of data, and data management and integrity. This support is designed to ensure that studies yield reliable conclusions, resources are efficiently used, and exploratory analyses uncover important leads.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA097189-06
Application #
8246725
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (O1))
Project Start
2011-12-01
Project End
2017-05-31
Budget Start
2012-06-21
Budget End
2013-05-31
Support Year
6
Fiscal Year
2012
Total Cost
$141,107
Indirect Cost
$67,220
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Sizemore, Steven T; Mohammad, Rahman; Sizemore, Gina M et al. (2018) Synthetic Lethality of PARP Inhibition and Ionizing Radiation is p53-dependent. Mol Cancer Res 16:1092-1102
Pitarresi, Jason R; Liu, Xin; Avendano, Alex et al. (2018) Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Alliance 1:e201800190
Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M et al. (2018) Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene 37:4428-4442
Rudolph, M; Sizemore, S T; Lu, Y et al. (2018) A hedgehog pathway-dependent gene signature is associated with poor clinical outcomes in Luminal A breast cancer. Breast Cancer Res Treat 169:457-467
Sizemore, Gina M; Balakrishnan, Subhasree; Thies, Katie A et al. (2018) Stromal PTEN determines mammary epithelial response to radiotherapy. Nat Commun 9:2783
Hammer, Anisha M; Sizemore, Gina M; Shukla, Vasudha C et al. (2017) Stromal PDGFR-? Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth. Neoplasia 19:496-508
Kent, Lindsey N; Bae, Sooin; Tsai, Shih-Yin et al. (2017) Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 127:830-842
Wu, Jinghai; Liu, Xin; Nayak, Sunayana G et al. (2017) Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS One 12:e0184984
Sizemore, Gina M; Pitarresi, Jason R; Balakrishnan, Subhasree et al. (2017) The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 17:337-351
Victor, Aaron R; Nalin, Ansel P; Dong, Wenjuan et al. (2017) IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-?B. J Immunol 199:2333-2342

Showing the most recent 10 out of 89 publications