The goal of this application is to explore the role that neurons in the Lateral Habenula (LHb) play in regulating ethanol intake. Aversive, negative sensory input is processed by the habenular complex, an epithalamic structure involved in fear, anxiety, depression, stress and reward. The LHb receives inputs primarily from the basal ganglia and sends outputs mainly to dopaminergic (DA) and serotonergic neurons. The LHb provides an important source of negative reinforcing signals to midbrain DA cells. This profound and consistent inhibitory influence involves a disynaptic connection from glutamate neurons in the LHb to the GABA cells in the Rostromedial Mesopontine Tegmental Nucleus (RMTg) that, in turn, innervates DA neurons. Much work has shown that the habenula plays a key role in nicotine addiction and withdrawal and in the regulation of morphine self-administration, as well as cocaine seeking behavior. However, the role of LHb in ethanol addiction has not been well explored. It is well accepted that the DA system, including the ventral tegmental area (VTA), is involved in ethanol seeking and relapse. Although ethanol acutely activates mesolimbic DA transmission, withdrawal from chronic ethanol exposure leads to substantial decrements in VTA DA neuronal activities and extracellular levels of dopamine in the nucleus accumbens. It is believed that this dopamine hypofunction leads to a dysphoric state that drives drug seeking to restore dopamine to normal, drug-na?ve levels. However, the mechanisms causing dopamine hypofunction are not well understood. Our proposed experiments will therefore specifically test the central hypothesis that over-activity of LHb neurons in alcohol dependent animals drives inhibitory RMTg neurons which reduce firing of VTA DA neurons. These inhibitory effects may underlie the dopamine hypofunction and aversive state that may substantially contribute to excessive drinking. We will test this hypothesis by the use of a rat model of chronic intermittent ethanol self-administration (CIESA) and a multidisciplinary approach, including state-of-the-art optogenetic techniques in the following two separate but integrated Specific Aims.
Specific Aim 1 will test the hypothesis by assessing changes in voluntary ethanol drinking while the function of the LHb neurons is manipulated by electrical/light stimulation or pharmacologically. We will also measure changes caused by CIESA on the activity of neurons in the LHb and RMTg by means of Fos immunoreactivity, on protein levels of glutamate receptors using Western blotting, and extracellular levels of glutamate in the LHb and RMTg using microdialysis techniques.
Specific Aim 2 will examine the cellular mechanisms underlying LHb regulation of ethanol drinking behaviors by electrophysiological recording in brain slices of alcohol dependent animals. We will characterize changes caused by CIESA in the activity of, and glutamatergic synaptic transmissions to, neurons in the LHb and RMTg. These studies will provide important new information that will significantly advance our understanding of the role of LHb and RMTg in alcohol use disorders. These studies could also provide insight into the cellular mechanisms governing negative reinforcement-associated drinking in human alcoholics.

Public Health Relevance

The goal of this project is to explore the role that neurons in the LHb play in regulating alcohol intake. Once the project is completed, we will better understand how chronic alcohol exposures alter this important but overlooked brain area. PUBLIC HEALTH RELEVANCE: Recent studies indicate that withdrawal from chronic alcohol exposure leads to dopamine hypofunction which leads to a dysphoric negative emotional state that drives drug seeking to restore dopamine to normal, na?ve levels. Emerging evidence suggests that the lateral habenula may contribute to dopamine hypofunction. The proposed studies in this project will test this possibility.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA021657-05
Application #
9244712
Study Section
Special Emphasis Panel (ZRG1-IFCN-Q (03)M)
Program Officer
Cui, Changhai
Project Start
2013-07-20
Project End
2018-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
5
Fiscal Year
2017
Total Cost
$302,411
Indirect Cost
$112,215
Name
Rutgers University
Department
Type
Domestic Higher Education
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
07103
Kang, Seungwoo; Li, Jing; Bekker, Alex et al. (2018) Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 129:47-56
Fu, Rao; Mei, Qinghua; Zuo, Wanhong et al. (2017) Low-dose ethanol excites lateral habenula neurons projecting to VTA, RMTg, and raphe. Int J Physiol Pathophysiol Pharmacol 9:217-230
Li, Jing; Kang, Seungwoo; Fu, Rao et al. (2017) Inhibition of AMPA receptor and CaMKII activity in the lateral habenula reduces depressive-like behavior and alcohol intake in rats. Neuropharmacology 126:108-120
Kang, Seungwoo; Li, Jing; Zuo, Wanhong et al. (2017) Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 42:1813-1824
Zuo, Wanhong; Wang, Liwei; Chen, Lixin et al. (2017) Ethanol potentiates both GABAergic and glutamatergic signaling in the lateral habenula. Neuropharmacology 113:178-187
Li, Jing; Fu, Caihong; Liu, Hongwei et al. (2017) Electroacupuncture Attenuates Hyperalgesia in Rats Withdrawn from Chronic Alcohol Drinking via Habenular Mu Opioid Receptors. Alcohol Clin Exp Res 41:637-643
Zuo, Wanhong; Fu, Rao; Hopf, Frederic Woodward et al. (2017) Ethanol drives aversive conditioning through dopamine 1 receptor and glutamate receptor-mediated activation of lateral habenula neurons. Addict Biol 22:103-116
Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi et al. (2016) Serotonin modulates glutamatergic transmission to neurons in the lateral habenula. Sci Rep 6:23798
Fu, Rao; Chen, Xing; Zuo, Wanhong et al. (2016) Ablation of ? opioid receptor-expressing GABA neurons in rostromedial tegmental nucleus increases ethanol consumption and regulates ethanol-related behaviors. Neuropharmacology 107:58-67
Guan, Y-Z; Ye, J-H (2016) Glycine blocks long-term potentiation of GABAergic synapses in the ventral tegmental area. Neuroscience 318:134-42

Showing the most recent 10 out of 17 publications