Telomerase reverse transcriptase (TERT) enables telomere elongation that is essential for continuous cell proliferation. TERT expression that is associated with activating mutations in the TERT promoter, is observed in virtually all glioblastoma and oligodendroglioma cases. This makes TERT the most common genetic alteration in brain tumors, and a novel therapeutic target. Noninvasive imaging of TERT expression could therefore help in distinguishing between pseudo-progression and recurrent glioma, and provide a noninvasive biomarker for assessment of treatment efficacy by TERT inhibitors. However, to date, no translational imaging approaches for TERT expression have been reported. The goal of Project 3 is to address this critical need by developing metabolic imaging biomarkers of TERT expression. Our approach is based on previous reports showing that TERT expression is associated with control of cellular redox, and our preliminary data confirming this finding and identifying additional metabolic alterations. Specifically, we have found that 1H magnetic resonance spectroscopy (MRS)-detectable levels of glutathione and the 13C MRS-detectable metabolism of hyperpolarized dehydroxyascorbate to vitamin C, are elevated in TERT-expressing cells. Additionally, hyperpolarized 13C MRS- detectable fluxes of glucose and gluconolactone via the pentose phosphate pathway to 6-phosphogluconate are elevated, as are the levels of aspartate and adenosine phosphates. We therefore hypothesize that advanced MRS metabolic imaging could be used to distinguish glioma cells expressing TERT from normal brain parenchyma and from tumor cells in which TERT expression is silenced by treatment. We will test this hypothesis as follows.
In Aim 1 we will identify 1H MRS and hyperpolarized 13C MRS metabolic imaging biomarkers that are associated with TERT expression by investigating cell lines that differ only in their TERT status and determining if levels of MRS-detectable metabolic biomarkers associated with redox, and other metabolic changes can distinguish TERT-expressing from TERT non-expressing cells.
In Aim 2 we will determine whether MRS- detectable biomarkers of redox can be used to monitor TERT expression in vivo by using mouse models with orthotopic TERT-expressing brain tumors, inhibiting TERT expression via genetic and/or pharmacological approaches, and determining if this inhibition can be assessed using 1H and/or hyperpolarized 13C MRS biomarkers of redox. If cell studies show that other metabolic pathways are modulated by TERT, these will also be investigated in vivo.
In Aim 3 we will investigate mechanisms linking TERT expression with metabolism by assessing cellular processes known to be associated with TERT expression and determining if these processes are mechanistically linked to changes in redox-associated metabolic pathways or other MRS-detectable metabolic pathways altered by TERT. Our study is expected to lead to translatable MRS-detectable metabolic biomarkers of TERT expression that could improve glioma patient treatment and outcome.

Public Health Relevance

TERT is the most common genetic alteration in brain tumors, and a novel therapeutic target. The research proposed in Project 3 aims to identify metabolic imaging biomarkers of TERT expression. Such biomarkers could be used in the clinic to help distinguish between pseudo-progression, where TERT expression is not expected, and recurrence of TERT-expressing tumors. Our biomarkers could also help in monitoring the effect of TERT expression inhibitors currently under development, helping both in drug development and in noninvasive monitoring of TERT inhibition in patients. Collectively, our innovative imaging biomarkers could lead to enhanced precision care and improved outcomes for glioma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA118816-11A1
Application #
9790512
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
11
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Mancini, Andrew; Xavier-Magalhães, Ana; Woods, Wendy S et al. (2018) Disruption of the ?1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell 34:513-528.e8
Vareth, Maryam; Lupo, Janine; Larson, Peder et al. (2018) A comparison of coil combination strategies in 3D multi-channel MRSI reconstruction for patients with brain tumors. NMR Biomed 31:e3929
Li, Yan; Lafontaine, Marisa; Chang, Susan et al. (2018) Comparison between Short and Long Echo Time Magnetic Resonance Spectroscopic Imaging at 3T and 7T for Evaluating Brain Metabolites in Patients with Glioma. ACS Chem Neurosci 9:130-137
Gordon, Jeremy W; Chen, Hsin-Yu; Autry, Adam et al. (2018) Translation of Carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med :
Choi, Serah; Yu, Yao; Grimmer, Matthew R et al. (2018) Temozolomide-associated hypermutation in gliomas. Neuro Oncol 20:1300-1309
Park, Ilwoo; Larson, Peder E Z; Gordon, Jeremy W et al. (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864-873
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Zou, Xiaowei; Hart, Blaine L; Mabray, Marc et al. (2017) Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations. Neuroradiology 59:685-690
Fan, QiWen; Aksoy, Ozlem; Wong, Robyn A et al. (2017) A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 31:424-435
Campbell, Brittany B; Light, Nicholas; Fabrizio, David et al. (2017) Comprehensive Analysis of Hypermutation in Human Cancer. Cell 171:1042-1056.e10

Showing the most recent 10 out of 75 publications