New developments in understanding the mechanisms of actions of biological messengers and their receptors require research carried out on many different levels of the organism, and making use of a wide range of scientific disciplines and methodologies. This program project proposes to carry out such a wide ranging study, with its primary, though not exclusive, focus on the opioid system. The various individual proposals in this project study opioid and other receptors from levels ranging from their molecular structure to their biochemical regulation and consequences to their biological functions. Approaches used range from the pharmacological (in vivo and in vitro manipulation), biochemical (receptor characterization and purification, receptor-channel coupling), chemical (structure-activity studies), immunological (mono- and polyclonal antibodies), molecular biological (gene expression and regulation of receptors or ligands) and neuroanatomical (characterization of storage site and release of neuropeptides). Studies of receptor structure will be carried out by Conti-Tronconi, Loh and Portoghese. Conti-Tronconi will prepare monoclonal antibodies to specific amino acid sequences of the nicotinic receptor, and use these antibodies to map agonist and antagonist binding sites, intra- and extra- membrane portions of the receptor, and tissue distribution of these receptors. Loh will apply a somewhat similar approach to a recently- cloned putative delta opioid receptor. Portoghese will further characterize the binding of opioid azines to brain membranes, which his previous research has determined involves conversion of the azine to a hydrazone, which then reacts with a neighboring phosphatide in the membrane. Law and Takemori will study opioid receptor regulation, and Eide will study regulation of neuropeptides. Law will study the regulation of the putative delta opioid receptor gene, which he and his collaborators recently cloned from NG108-15 neuroblastoma-glioma hybrid cells. Takemori will test the ability of selective irreversible mu and delta antagonists to block the development of tolerance. Elde will study processes involved in the storage and release of neuropeptides. Receptor function will be studied by Raftery, Holtzman and Lee. Raftery will study the cholinergic receptor as a sodium pump. Holtzman will further characterize the role of thiol:potein disulfide oxidoreductase in hormone action, which he recently found was activated by glucagon. Lee will use mono and polyclonal antibodies to explore the role of dynorphin in inducing analgesia and/or modulating morphine-induced analgesia, in both the brain and the spinal cord.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA005695-05
Application #
2118137
Study Section
Special Emphasis Panel (SRCD (03))
Project Start
1989-08-01
Project End
1995-01-31
Budget Start
1993-08-01
Budget End
1995-01-31
Support Year
5
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Pharmacology
Type
Schools of Medicine
DUNS #
168559177
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Choe, Chung-youl; Kim, Hogyoung; Dong, Jinping et al. (2011) The polypyrimidine/polypurine motif in the mouse mu opioid receptor gene promoter is a supercoiling-regulatory element. Gene 487:52-61
Choe, Chung-Youl; Dong, Jinping; Law, Ping-Yee et al. (2011) Differential gene expression activity among species-specific polypyrimidine/polypurine motifs in mu opioid receptor gene promoters. Gene 471:27-36
Law, P Y; Wong, Y H; Loh, H H (1999) Mutational analysis of the structure and function of opioid receptors. Biopolymers 51:440-55
Lentz, T L; Chaturvedi, V; Conti-Fine, B M (1998) Amino acids within residues 181-200 of the nicotinic acetylcholine receptor alpha1 subunit involved in nicotine binding. Biochem Pharmacol 55:341-7
Conti-Fine, B M; Maelicke, A; Reinhardt-Maelicke, S et al. (1995) Binding sites for neurotoxins and cholinergic ligands in peripheral and neuronal nicotinic receptors. Studies with synthetic receptor sequences. Ann N Y Acad Sci 757:133-52
Grando, S A; Horton, R M; Pereira, E F et al. (1995) A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J Invest Dermatol 105:774-81
Lei, S; Okita, D K; Conti-Fine, B M (1995) Binding of monoclonal antibodies against the carboxyl terminal segment of the nicotinic receptor delta subunit suggests an unusual transmembrane disposition of this sequence region. Biochemistry 34:6675-88
Law, P Y; McGinn, T M; Wick, M J et al. (1994) Analysis of delta-opioid receptor activities stably expressed in CHO cell lines: function of receptor density? J Pharmacol Exp Ther 271:1686-94
Conti-Tronconi, B M; McLane, K E; Raftery, M A et al. (1994) The nicotinic acetylcholine receptor: structure and autoimmune pathology. Crit Rev Biochem Mol Biol 29:69-123
Prather, P L; Loh, H H; Law, P Y (1994) Interaction of delta-opioid receptors with multiple G proteins: a non-relationship between agonist potency to inhibit adenylyl cyclase and to activate G proteins. Mol Pharmacol 45:997-1003

Showing the most recent 10 out of 43 publications