there is ample evidence based on preclinical work indicating that spinal delta opioid receptors can modify the processing of nociceptive information. Modest amounts of data with poorly selective delta agonists have confirmed this possibility in humans. The development of highly selective agonists for the delta receptor raises the possibility of finally confirming the role of spinal delta receptors in humans. Thus, the compound DPDPE is such an agent and assessment of its actions in humans after spinal delivery would be an important theoretical and clinically relevant advance. The present studies are aimed at defining the safety of DPDPE given intrathecally in rat and dog models. Existing data in a rat model has provided an initial confirmation of the safety of DPDPE. The next step prior to moving to humans is to further characterize the safety of DPDPE prior to assessing its action in humans. Specifically, the present studies will I) Define the effects of spinal DPDPE on spinal blood flow in the rat; and ii) Define the toxicology/histopathology of 28 day spinal infusion of vehicle or two doses of DEPDPE in a well defined dog model with chronically placed intrathecal catheters. Based on the extensive experience with these models, should the dog model display safety, it would be appropriate to subsequently consider the development of human studies protocols for examining the spinal effects of this delta selective agonist.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA006284-11
Application #
6300723
Study Section
Project Start
2000-04-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
11
Fiscal Year
2000
Total Cost
$104,534
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Remesic, Michael; Macedonio, Giorgia; Mollica, Adriano et al. (2018) Cyclic biphalin analogues with a novel linker lead to potent agonist activities at mu, delta, and kappa opioid receptors. Bioorg Med Chem 26:3664-3667
Mowlazadeh Haghighi, Saghar; Zhou, Yang; Dai, Jixun et al. (2018) Replacement of Arg with Nle and modified D-Phe in the core sequence of MSHs, Ac-His-D-Phe-Arg-Trp-NH2, leads to hMC1R selectivity and pigmentation. Eur J Med Chem 151:815-823
Sandweiss, A J; McIntosh, M I; Moutal, A et al. (2018) Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential. Mol Psychiatry 23:1745-1755
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita et al. (2017) Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain 158:2386-2395
Vardanyan, Ruben S; Cain, James P; Haghighi, Saghar Mowlazadeh et al. (2017) Synthesis and Investigation of Mixed ?-Opioid and ?-Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. J Heterocycl Chem 54:1228-1235
Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake et al. (2017) Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry 56:4201-4209
Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J (2016) Cyclic Opioid Peptides. Curr Med Chem 23:1288-303
Ramos-Colon, Cyf N; Lee, Yeon Sun; Remesic, Michael et al. (2016) Structure-Activity Relationships of [des-Arg7]Dynorphin A Analogues at the ? Opioid Receptor. J Med Chem 59:10291-10298
Hall, Sara M; Lee, Yeon Sun; Hruby, Victor J (2016) Dynorphin A analogs for the treatment of chronic neuropathic pain. Future Med Chem 8:165-77
Deekonda, Srinivas; Cole, Jacob; Sunna, Sydney et al. (2016) Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorg Med Chem Lett 26:222-7

Showing the most recent 10 out of 268 publications