The Physiology Electronics Core specializes in the custom design, construction and repair of electronic instruments. Their expertise includes, but is not limited to, patch clamps, video imaging, computer interfaces, voltammetry, PMT amplifiers, electrometer amplifiers both intracellular and extra cellular, temperature control of static bath and flowing solutions, photo-diode amplifiers and arrays with software for acquisition and analysis. With extensive experience in electrophysiological, molecular biology and biochemistry instrumentation and related apparatus, they design complete experimental set-ups or trouble shoot existing ones. Consultation is provided for analytical review of current experimental set-ups, as well as devise and develop future needs. In addition, the core updates, repairs and performs routine maintenance on computers microprocessors, patch-clamp amplifiers, electrometers and other electronic equipment; which may have been manufactured by the Biomedical Instrumentation Laboratory or may have been acquired commercially.

Project Start
1998-12-29
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
26
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Kim, Jun-Mo; Xu, Shuhua; Guo, Xiaoyun et al. (2018) Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice. Am J Physiol Regul Integr Comp Physiol 314:R334-R341
Gassaway, Brandon M; Petersen, Max C; Surovtseva, Yulia V et al. (2018) PKC? contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A 115:E8996-E9005
Gilder, Allison L; Chapin, Hannah C; Padovano, Valeria et al. (2018) Newly synthesized polycystin-1 takes different trafficking pathways to the apical and ciliary membranes. Traffic 19:933-945
Barber, Karl W; Muir, Paul; Szeligowski, Richard V et al. (2018) Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nat Biotechnol 36:638-644
Scholl, Ute I; Stölting, Gabriel; Schewe, Julia et al. (2018) CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50:349-354
Barber, Karl W; Rinehart, Jesse (2018) The ABCs of PTMs. Nat Chem Biol 14:188-192
Barber, Karl W; Miller, Chad J; Jun, Jay W et al. (2018) Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library. Biochemistry 57:4717-4725
Castañeda-Bueno, Maria; Arroyo, Juan Pablo; Zhang, Junhui et al. (2017) Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 114:E879-E886
Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon et al. (2017) MS-READ: Quantitative measurement of amino acid incorporation. Biochim Biophys Acta Gen Subj 1861:3081-3088
D'Lima, Nadia G; Khitun, Alexandra; Rosenbloom, Aaron D et al. (2017) Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli. J Proteome Res 16:3722-3731

Showing the most recent 10 out of 303 publications