The critical role of inflammation in obesity and T2D is now well established. Under this Grant, we have focused on defining the roles of components of the NCoR/SMRT co-repressor complexes in inflammation, including TBL1/TBLR1 and GPS2, and the development of a new technology that has permitted us to examine interactions between distant genomic regions. We have identified a new mechanism by which GPS2 protects cells against a hyper-infiammatory state, and we have uncovered novel roles of ncRNAs in targeting co-regulatory complexes to discreet locations In the nucleus with speciflc transcriptional functions. In this Project, we will capitalize on these recent discoveries to advance three new Specific Aims.
In Specific Aim 1, we will delineate the molecular mechanisms by which GPS2, an NCoR/SMRT-associated protein, suppresses hyper-inflammatory transcriptional responses in both macrophages and adipose tissue. These studies will test the hypothesis that GPS2 functions to regulate PPARy activity and infiammatory responses by acting both in the nucleus as a component of NCoR co-repressor complexes, and at the plasma membrane as an inhibitor of cell surface receptors that mediate responses to inducers and amplifiers of inflammation.
In Specific Aim II, we will define the molecular and physiological roles of SMRT in macrophages and adipocytes. In concert with the unexpected findings by Projects 1 and 3 that deletion of the related co-repressor NCoR from either adipocytes or macrophages results in protection from obesity- induced insulin resistance, these studies may facilitate the identification of chemicals/ligands that selectively regulate insulin-sensitizing functions of nuclear receptors, such as PPARy.
In Specific Aim 1 11, we will test the hypothesis that pro-infiammatory gene activation requires regulated interactions of promoter-associated transcriptional co-regulators with non-coding RNAs resident in specific sub-nuclear architectural structures. We will investigate whether directed movements between these sub-nuclear structures are required for regulated gene expression. These studies will therefore explore conceptually new cellular mechanisms for transcriptional control of gene expression that may be targets for therapeutic intervention.

Public Health Relevance

The proposed studies will be of significance in advancing our understanding of central pathogenic mechanisms that drive the development of insulin resistance and contribue to the development of future therapeutic approaches to prevent and treat type 2 diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Riopel, Matthew; Seo, Jong Bae; Bandyopadhyay, Gautam K et al. (2018) Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. J Clin Invest 128:1458-1470
Link, Verena M; Duttke, Sascha H; Chun, Hyun B et al. (2018) Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell 173:1796-1809.e17
Carlin, Aaron F; Vizcarra, Edward A; Branche, Emilie et al. (2018) Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and bystander macrophages. Proc Natl Acad Sci U S A 115:E9172-E9181
Cardamone, Maria Dafne; Tanasa, Bogdan; Cederquist, Carly T et al. (2018) Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 69:757-772.e7
Fernandez, Marina O; Sharma, Shweta; Kim, Sun et al. (2017) Obese Neuronal PPAR? Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility. Endocrinology 158:121-133
Oishi, Yumiko; Spann, Nathanael J; Link, Verena M et al. (2017) SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism. Cell Metab 25:412-427
Ying, Wei; Wollam, Joshua; Ofrecio, Jachelle M et al. (2017) Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest 127:1019-1030
Johnson, Andrew M F; Hou, Shaocong; Li, Pingping (2017) Inflammation and insulin resistance: New targets encourage new thinking: Galectin-3 and LTB4 are pro-inflammatory molecules that can be targeted to restore insulin sensitivity. Bioessays 39:
Li, Pingping; Liu, Shuainan; Lu, Min et al. (2016) Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 167:973-984.e12
Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M et al. (2016) Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. Elife 5:

Showing the most recent 10 out of 117 publications