The long-term goal of the research described in this grant proposal is to understand the mechanistic basis for inhibitory drug interactions involving human CYP3A4. This is important for the avoidance of adverse events with the numerous drugs in clinical use today that are either a substrate or inhibitor of the enzyme. It will also aid greatly in predicting the in vivo inhibitory potential for new molecular entities under develop. We hypothesize that effects of several clinically important inhibitory drugs on the first-pass clearance of CYP3A substrate occurs predominantly with the intestinal mucosa, and they can last well beyond the period of inhibitor absorption. This will be investigated with the following Specific Aims: I. To determine whether the inhibitory effect of azole anti-fungals on the first-pass metabolism of the CYP3A marker midazolam occurs predominantly within the intestinal mucosa rather than liver, and whether this preferential inhibition persists will beyond the period of inhibitor absorption due to sequestration of inhibitor in the mucosa. II. To determine whether inhibition of intestinal rather than hepatic first-pass is the predominant mechanism by which dialkylamine inhibitors elevate the systemic availability of orally administered midazolam, and to determine whether the time-course of inhibition parallels the formation of a slowly reversible MI-CYP3A complex. III. To determine if the in vivo effect during multiple dosing of a prototype macrolide inhibitor, erythromycin, an oral midazolam bioavailability, depends on the amount of CYP3A4 expressed in the intestinal mucosa and the accumulation over time of the di-desmethyl erythromycin metabolite in that tissue. We will employ three experimental paradigms; pharmacokinetic studies in healthy human volunteers; in vitro metabolic studies in human-derived Caco-2 cell culture monolayers; and in vivo intestinal extraction studies in a domestic pig model. This three-tiered approach should allow us to identify the contribution of readily predictable, reversible interactions between inhibitor and substrate, and current unpredictable, slowly reversible phenomena such as intracellular inhibitor sequestration and MI complex formation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM032165-17
Application #
6204208
Study Section
Project Start
1999-08-01
Project End
2000-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
17
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wong, Timothy; Wang, Zhican; Chapron, Brian D et al. (2018) Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans. Drug Metab Dispos 46:367-379
Shirasaka, Y; Chaudhry, A S; McDonald, M et al. (2016) Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content. Pharmacogenomics J 16:375-87
Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K et al. (2016) Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front Pharmacol 7:161
Stamper, Brendan D; Garcia, Michael L; Nguyen, Duy Q et al. (2015) p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo. Gene Regul Syst Bio 9:1-14
McDonald, Matthew G; Au, Nicholas T; Rettie, Allan E (2015) P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab Dispos 43:1661-9
Chaudhry, Amarjit S; Prasad, Bhagwat; Shirasaka, Yoshiyuki et al. (2015) The CYP2C19 Intron 2 Branch Point SNP is the Ancestral Polymorphism Contributing to the Poor Metabolizer Phenotype in Livers with CYP2C19*35 and CYP2C19*2 Alleles. Drug Metab Dispos 43:1226-35
Liu, Li; Collier, Ann C; Link, Jeanne M et al. (2015) Modulation of P-glycoprotein at the Human Blood-Brain Barrier by Quinidine or Rifampin Treatment: A Positron Emission Tomography Imaging Study. Drug Metab Dispos 43:1795-804
Ho, Han Kiat; Chan, James Chun Yip; Hardy, Klarissa D et al. (2015) Mechanism-based inactivation of CYP450 enzymes: a case study of lapatinib. Drug Metab Rev 47:21-8
Chapron, Brian; Risler, Linda; Phillips, Brian et al. (2015) Reversible, time-dependent inhibition of CYP3A-mediated metabolism of midazolam and tacrolimus by telaprevir in human liver microsomes. J Pharm Pharm Sci 18:101-11
Hardy, Klarissa D; Wahlin, Michelle D; Papageorgiou, Ioannis et al. (2014) Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells. Drug Metab Dispos 42:162-71

Showing the most recent 10 out of 361 publications