The reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIM-l) is an important target for drug therapy in the treatment of AIDS. Despite the recent successes, several of the most important anti-RT drugs are relatively toxic and all of them select for resistant variants of the virus. We believe that a better understanding of the structure and function of HIV-1 RT would be useful in the design of more effective inhibitors. This project is part of a larger collaborative effort to understand the mechanism(s) of drug resistance of HIV-1 RT. We will use recombinant DNA techniques to express both wild-type and mutant RT. Purified RT (both mutant and wild-type) will be prepared and used for biochemical, biophysical and structural analysis (the structural analysis will be done in the laboratory of Dr. Edward Arnold). We can also supply recombinant HIV-1 RT to Dr. Parniak as needed. We have developed a system using a one-round HIV-1 vector to measure the effects of mutations in RT or in the genome on DNA synthesis in infected cells. The in vivo HIV-1 vector experiments have been designed so that we can follow specific steps in reverse transcription; this should make it possible to compare results obtained in vitro with purified mutant RT and the effects of these RT mutants on viral replication.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
1P01GM066671-01
Application #
6553910
Study Section
Special Emphasis Panel (ZRG1)
Project Start
2002-07-01
Project End
2007-06-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Rutgers University
Department
Type
DUNS #
038633251
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Hou, Xiaorong; Wang, Gang; Gaffney, Barbara L et al. (2010) Preparation of DNA and RNA fragments containing guanine N(2)-thioalkyl tethers. Curr Protoc Nucleic Acid Chem Chapter 5:Unit 5.8
Tu, Xiongying; Das, Kalyan; Han, Qianwei et al. (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17:1202-9
Das, Kalyan; Bandwar, Rajiv P; White, Kirsten L et al. (2009) Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J Biol Chem 284:35092-100
Han, Qianwei; Sarafianos, Stefan G; Arnold, Eddy et al. (2009) Synthesis of Boranoate, Selenoate, and Thioate Analogs of AZTp(4)A and Ap(4)A. Tetrahedron 65:7915-7920
Sarafianos, Stefan G; Marchand, Bruno; Das, Kalyan et al. (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693-713
Hou, Xiaorong; Wang, Gang; Gaffney, Barbara L et al. (2009) Synthesis of guanosine and deoxyguanosine phosphoramidites with cross-linkable thioalkyl tethers for direct incorporation into RNA and DNA. Nucleosides Nucleotides Nucleic Acids 28:1076-94
Arnold, Gail Ferstandig; Velasco, Paola K; Holmes, Andrew K et al. (2009) Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J Virol 83:5087-100
Bauman, Joseph D; Das, Kalyan; Ho, William C et al. (2008) Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res 36:5083-92
Fang, Chong; Bauman, Joseph D; Das, Kalyan et al. (2008) Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with HIV-1 reverse transcriptase. Proc Natl Acad Sci U S A 105:1472-7
Das, Kalyan; Bauman, Joseph D; Clark Jr, Arthur D et al. (2008) High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A 105:1466-71

Showing the most recent 10 out of 25 publications