The SNARE hypothesis states that the folding and assembly of four-helix SNARE complex bundles drives intracellular membrane fusion, including fusion in exocytosis of synaptic vesicles at the plasma membranes of synaptic terminals in neurons. The neuronal SNAREs are syntaxin 1 a and SNAP-25 on the plasma membrane and synaptobrevin 2 on the vesicle membrane. Syntaxin contributes one and SNAP-25 contributes two helices to the active acceptor SNARE complex on the target membrane. Synaptic vesicles dock to the presynaptic plasma membrane by contributing synaptobrevin to the nascent SNARE complex. How far this trans-SNARE complex that bridges the two membranes is folded is presently not known. The trans-SNARE complex is then thought to zipper-fold from the N- towards the C-terminus of the parallel fourhelix bundle. The bundle, thereby pulling the two membranes into close proximity. In a final step, SNARE complex folding proceeds into the transmembrane domains of syntaxin and synaptobrevin to form a cis- SNARE complex, i.e. a step which must be coupled with merging the lipid bilayers of the two membranes. The research proposed in this project will dissect the described folding steps and correlate them with different stages of vesicle docking and membrane fusion. Magnetic resonance approaches will be taken to determine (dynamic) structures of SNARE folding intermediates and micro-fluorescence approaches will be taken to determine the kinetics and higher architecture of the evolving fusion pore in artificial and cellular membrane preparations.

Public Health Relevance

Fusion of synaptic vesicles with the presynaptic membrane of neurons is a key element of neurotransmitter release in synaptic transmission. Defects in synaptic transmission lead to epilepsy, depression, and other neurological disorders. The research of this grant will elucidate the basic mechanism that leads to presynaptic membrane fusion and thus help define disorders in which this mechanism is disturbed.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM072694-09
Application #
8706171
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Yavuz, Halenur; Kattan, Iman; Hernandez, Javier M et al. (2018) Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion. J Biol Chem 293:8645-8655
Liang, Binyong; Tamm, Lukas K (2018) Solution NMR of SNAREs, complexin and ?-synuclein in association with membrane-mimetics. Prog Nucl Magn Reson Spectrosc 105:41-53
Hussain, Syed Saad; Harris, Megan T; Kreutzberger, Alex J B et al. (2018) Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 29:1238-1257
Blackburn, Matthew R; Hubbard, Caitlin; Kiessling, Volker et al. (2018) Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 28:108-121
Witkowska, Agata; Jablonski, Lukasz; Jahn, Reinhard (2018) A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Sci Rep 8:9422
Kiessling, Volker; Kreutzberger, Alex J B; Liang, Binyong et al. (2018) A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis. Nat Struct Mol Biol 25:911-917
Nyenhuis, Sarah B; Cafiso, David S (2018) Choice of reconstitution protocol modulates the aggregation state of full-length membrane-reconstituted synaptotagmin-1. Protein Sci 27:1008-1012
Kreutzberger, Alex J B; Kiessling, Volker; Liang, Binyong et al. (2017) Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability. Biophys J 113:1912-1915
Tamm, Lukas K (2017) Special Issue on Liposomes, Exosomes, and Virosomes. Biophys J 113:E1
Jakhanwal, Shrutee; Lee, Chung-Tien; Urlaub, Henning et al. (2017) An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO J 36:1788-1802

Showing the most recent 10 out of 76 publications