Improving macromolecular crystallization using lattice-promoting variants of GFP The bottleneck in structure determination by X-ray crystallography is crystallization, where -70% of purified proteins fail. A major reason proteins fail to crystallize is insufficient suitable lattice-forming contacts. The central hypothesis in this project is that the probability of obtaining crystals is increased every time a new form of a molecule with new potential crystal contacts is tested. We will develop rapid and general methods to generate numerous venations on a protein molecule by linking the protein to a series of oligomeric forms of green fluorescent protein (GFP). The use of GFP is a major advantage because it can be linked firmly to practically any protein by inserting a hairpin (two strands connected by a loop) from GFP into a loop of the target protein. The target protein containing this extra hairpin can bind tightly to a
Leibly, David J; Arbing, Mark A; Pashkov, Inna et al. (2015) A Suite of Engineered GFP Molecules for Oligomeric Scaffolding. Structure 23:1754-1768 |
Close, Devin W; Paul, Craig Don; Langan, Patricia S et al. (2015) Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 83:1225-37 |
Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis et al. (2013) A new protein-protein interaction sensor based on tripartite split-GFP association. Sci Rep 3:2854 |
Hart, Darren J; Waldo, Geoffrey S (2013) Library methods for structural biology of challenging proteins and their complexes. Curr Opin Struct Biol 23:403-8 |
Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O et al. (2013) Split green fluorescent protein as a modular binding partner for protein crystallization. Acta Crystallogr D Biol Crystallogr 69:2513-23 |