Campylobacter is a major human enteric pathogen. Although breastfeeding protects infants against diarrheal disease, information regarding the role of breast milk in preventing diarrhea due to campylobacter is incomplete.
The specific aims of this project are to: 1) characterize antibodies in breast milk against specific campylobacter virulence factors (adherence factors and enterotoxin); 2) evaluate milk for non-antibody factors that might interfere with adherence, invasion and toxin action; 3) determine the frequency of symptomatic and asymptomatic campylobacter infection in breastfed and non- breastfed infants; 4) determine the association of specific antibodies and cell receptor analogs in breast milk with asymptomatic and symptomatic infection; and 5) determine the effect of breastfeeding on the specific virulence antigen related fecal sIgA and serum immune responses which develop during asymptomatic and symptomatic camyplobacter infection. The present proposal will allow us to better understand the role of breast milk in campylobacter infection in childhood and to delineate the mechanisms by which milk interacts with this enteropathogen. In addition, breast milk immune responses may reflect the mechanisms of protection that occur in the intestine and better define the immune response to the virulence elements.

Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1990
Total Cost
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77225
Reed, Benjamin D; Schibler, Kurt R; Deshmukh, Hitesh et al. (2018) The Impact of Maternal Antibiotics on Neonatal Disease. J Pediatr 197:97-103.e3
Young, Bridget E; Patinkin, Zachary W; Pyle, Laura et al. (2017) Markers of Oxidative Stress in Human Milk do not Differ by Maternal BMI But are Related to Infant Growth Trajectories. Matern Child Health J 21:1367-1376
Dingess, Kelly A; Valentine, Christina J; Ollberding, Nicholas J et al. (2017) Branched-chain fatty acid composition of human milk and the impact of maternal diet: the Global Exploration of Human Milk (GEHM) Study. Am J Clin Nutr 105:177-184
He, YingYing; Lawlor, Nathan T; Newburg, David S (2016) Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation. Adv Nutr 7:102-11
Vanchiere, John A; Carillo, Berenice; Morrow, Ardythe L et al. (2016) Fecal Polyomavirus Excretion in Infancy. J Pediatric Infect Dis Soc 5:210-3
Ward, Doyle V; Scholz, Matthias; Zolfo, Moreno et al. (2016) Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic E. coli in Necrotizing Enterocolitis and Mortality in Preterm Infants. Cell Rep 14:2912-24
Newburg, David S; Ko, Jae Sung; Leone, Serena et al. (2016) Human Milk Oligosaccharides and Synthetic Galactosyloligosaccharides Contain 3'-, 4-, and 6'-Galactosyllactose and Attenuate Inflammation in Human T84, NCM-460, and H4 Cells and Intestinal Tissue Ex Vivo. J Nutr 146:358-67
He, YingYing; Liu, ShuBai; Kling, David E et al. (2016) The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65:33-46
Hao, Ning; Chen, Yutao; Xia, Ming et al. (2015) Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope. Protein Cell 6:101-16
Currier, Rebecca L; Payne, Daniel C; Staat, Mary A et al. (2015) Innate Susceptibility to Norovirus Infections Influenced by FUT2 Genotype in a United States Pediatric Population. Clin Infect Dis 60:1631-8

Showing the most recent 10 out of 292 publications