Craniosynostosis (CS) is a common malformation occurring in ~4 per 10,000 live births in which the sutures close too early, causing long-term problems with normal brain and skull growth. Infants with CS typically require extensive surgical treatment and may experience many perioperative complications, including hemorrhage and re-synostosis. Even with successful surgery, children can experience developmental and learning disabilities or vision problems. Most often, CS appears as isolated nonsyndromic CS (NSC). Unilateral or bilateral fusion of the coronal suture is the second most common form of CS accounting for 20-30% of all NSC cases. The etiology of coronal NSC (cNSC) is not well understood, although the published literature suggests that it is a multifactorial condition. About 5-14% of coronal craniosynostosis patients have a positive family history, with a specific genetic etiology identified in >25% of cNSC cases - the largest proportion among any NSC cases, suggesting a strong genetic component in this birth defect pathogenesis. The causes for NSC and its phenotypic heterogeneity remain largely unknown. In the first and only genome-wide association study of NSC, our group identified two regions, downstream of BMP2 and within BBS9, associated with a 4-5 fold increased risk of sagittal NSC. While both BMP2 and BBS9 are genes with a role in skeletal development, only the BMP2 locus was borderline significant in coronal cases, suggesting that synostosis of each suture represents a different disease caused by different sets of genes. Therefore, we will collaborate with multiple sites to establish the largest collection of cNSC cases to date in order to identify biological pathways contributing to common forms of cNSC. We hypothesize that genetic variation explains a significant portion of cNSC risk.
Our specific aims are to: 1) Detect novel functional variants associated with cNSC. We will perform whole exome sequencing of 50 cases with the most severe disease manifestation and impute these data in all un-sequenced individuals; 2) Conduct the first genome-wide screening of several millions common and low frequency variants using ~850 trios with no known mutations to identify genetic loci over-transmitted to children with cNSC; 3) Perform validation studies to replicate the top genetic signals using an independent cohort of ~850 cNSC cases and controls, and 4) Perform imaging studies to examine morphometric patterns associated with the genetic risk burden and functional studies to determine functional consequences of the most promising genetic mutations. Synergy: specific parameters characterizing severity of craniofacial phenotypes in mice in Project I will inform morphometric analyses of human CS. The promising variants associated with cNSC will be incorporated into the network analysis and validated using functional assays in Project III. Identification of susceptibility genes will be the first step toward understanding the biological mechanisms of cNSC that may suggest novel postnatal therapeutics that in addition to surgery can provide a better result and prevent re- stenosis.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD078233-03
Application #
9217402
Study Section
Special Emphasis Panel (ZHD1-DRG-D)
Project Start
Project End
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
3
Fiscal Year
2017
Total Cost
$222,124
Indirect Cost
$65,927
Name
Icahn School of Medicine at Mount Sinai
Department
Type
Domestic Higher Education
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Richtsmeier, Joan T (2018) A century of development. Am J Phys Anthropol 165:726-740
Holmes, Greg; Zhang, Lening; Rivera, Joshua et al. (2018) C-type natriuretic peptide analog treatment of craniosynostosis in a Crouzon syndrome mouse model. PLoS One 13:e0201492
Martínez-Abadías, Neus; Mateu Estivill, Roger; Sastre Tomas, Jaume et al. (2018) Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis. Elife 7:
Musy, Marco; Flaherty, Kevin; Raspopovic, Jelena et al. (2018) A quantitative method for staging mouse embryos based on limb morphometry. Development 145:
Holmes, Greg; O'Rourke, Courtney; Motch Perrine, Susan M et al. (2018) Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 145:
Lesciotto, Kate M; Heuzé, Yann; Jabs, Ethylin Wang et al. (2018) Choanal Atresia and Craniosynostosis: Development and Disease. Plast Reconstr Surg 141:156-168
Motch Perrine, Susan M; Stecko, Tim; Neuberger, Thomas et al. (2017) Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes. Front Hum Neurosci 11:369
Wilkie, Andrew O M; Johnson, David; Wall, Steven A (2017) Clinical genetics of craniosynostosis. Curr Opin Pediatr 29:622-628
Starbuck, John M; Cole 3rd, Theodore M; Reeves, Roger H et al. (2017) The Influence of trisomy 21 on facial form and variability. Am J Med Genet A 173:2861-2872
Lee, Chanyoung; Richtsmeier, Joan T; Kraft, Reuben H (2017) A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL. J Mech Med Biol 17:

Showing the most recent 10 out of 24 publications