The Biochemistry Core Laboratory provides analytical support for the individual projects described in this Program grant application. The majority of the analytes required by the investigations described here are measured by manual radioimmunoassay (RIA). By having all the samples generated by individual investigators analyzed by staff with long experience with RiA techniques, in laboratories equipped with suitable instruments ,data can be obtained in a more uniform manner, with the strictest possible quality control and minimum of reagent expense. Samples from several investigators can be analyzed within one assay run, thus preventing the wastage which would be incurred by separate investigators analyzing small numbers of samples. Additionally, work can be scheduled more efficiently so that the technologists time is utilized with maximum efficiency resulting in almost no slack time. The projects of several investigators are worked on at the same time, thus reducing reagent costs, waste of labor and providing more uniform results.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051952-02
Application #
3737227
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
041418799
City
Winston-Salem
State
NC
Country
United States
Zip Code
27106
Dell'Italia, Louis J; Collawn, James F; Ferrario, Carlos M (2018) Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 122:319-336
Ahmad, Sarfaraz; Ferrario, Carlos M (2018) Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 28:755-764
Wang, Hao; Sun, Xuming; Lin, Marina S et al. (2018) G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 199:39-51
Ahmad, Sarfaraz; Sun, Xuming; Lin, Marina et al. (2018) Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 233:3330-3342
Li, Tiankai; Zhang, Xiaowei; Cheng, Heng-Jie et al. (2018) Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 264:137-144
Guichard, Jason L; Rogowski, Michael; Agnetti, Giulio et al. (2017) Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 313:H32-H45
Brosnihan, K Bridget; Chappell, Mark C (2017) Measurement of Angiotensin Peptides: HPLC-RIA. Methods Mol Biol 1527:81-99
Butts, Brittany; Goeddel, Lee A; George, David J et al. (2017) Increased Inflammation in Pericardial Fluid Persists 48 Hours After Cardiac Surgery. Circulation 136:2284-2286
Wang, Hao; Sun, Xuming; Chou, Jeff et al. (2017) Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis. Biochim Biophys Acta Mol Basis Dis 1863:1870-1882
da Silva, Jacqueline S; Gabriel-Costa, Daniele; Wang, Hao et al. (2017) Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. J Renin Angiotensin Aldosterone Syst 18:1470320317722270

Showing the most recent 10 out of 309 publications