The (Molecular Resources) core, is a newly established core, which will exist within the Center for Translational Respiratory Medicine located on the fifth floor of the Johns Hopkins Asthma and Allergy Building. This Core will directed by Dr. Michael T. Crow, who along with his capable co-investigators and skilled technicians, will assure strict quality control and continuity among the various molecular reagents shared by the various projects. The Core will provide sophisticated, state-of-the-art molecular methods and reagents which will facilitate the characterization and evaluation of key components associated with cytoskeletal organization, cytoskeletal protein-protein interactions, and imaging of cytoskeletal components within the cell. It will be fully utilized by all Projects in this PPG competitive renewal. Specific services to be provided are dictated by the Specific Aims of the Projects and include recombinant adenovirus and retrovirus production, site-directed and chimeric mutagenesis of key cytoskeletal regulatory molecules, the production of GST- and HIS-tagged fusion proteins for detecting and characterizing protein-protein interactions. In addition, the Core provides the necessary expertise, reagents, and controls for yeast two-hybrid screening and mammalian two-hybrid assays. It will be housed in the laboratories of Drs. Crow and Wadgaonkar, which are contiguous with Dr Garcia's laboratory and in close proximity to other investigators, insuring constant feedback between the Core and PPG investigators. In addition, the Core Leader and his staff will meet monthly with PPG leaders to discuss and establish priorities for current and future needs for reagents.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL058064-12
Application #
7347549
Study Section
Special Emphasis Panel (ZHL1)
Project Start
2007-02-01
Project End
2008-01-31
Budget Start
2007-02-01
Budget End
2008-01-31
Support Year
12
Fiscal Year
2007
Total Cost
$271,016
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Wang, Ting; Brown, Mary E; Kelly, Gabriel T et al. (2018) Myosin light chain kinase ( MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm Circ 8:2045894018764171
Wang, X; Wang, L; Garcia, J G N et al. (2018) The Significant Role of c-Abl Kinase in Barrier Altering Agonists-mediated Cytoskeletal Biomechanics. Sci Rep 8:1002
Oita, Radu C; Camp, Sara M; Ma, Wenli et al. (2018) Novel Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-?-mediated Apoptosis in Human Lung Endothelial Cells. Am J Respir Cell Mol Biol 59:36-44
Szilágyi, Keely L; Liu, Cong; Zhang, Xu et al. (2017) Epigenetic contribution of the myosin light chain kinase gene to the risk for acute respiratory distress syndrome. Transl Res 180:12-21
Wang, X; Bleher, R; Wang, L et al. (2017) Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep 7:14152
Shekhawat, Gajendra S; Dudek, Steven M; Dravid, Vinayak P (2017) Development of ultrasound bioprobe for biological imaging. Sci Adv 3:e1701176
Mascarenhas, Joseph B; Tchourbanov, Alex Y; Fan, Hanli et al. (2017) Mechanical Stress and Single Nucleotide Variants Regulate Alternative Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 56:29-37
Belvitch, Patrick; Brown, Mary E; Brinley, Brittany N et al. (2017) The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulm Circ 7:200-210
Camp, Sara M; Chiang, Eddie T; Sun, Chaode et al. (2016) ""Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and ?-Glucuronide-FTY720"". Chem Phys Lipids 194:85-93
Rojo de la Vega, Montserrat; Dodson, Matthew; Gross, Christine et al. (2016) Role of Nrf2 and Autophagy in Acute Lung Injury. Curr Pharmacol Rep 2:91-101

Showing the most recent 10 out of 270 publications