We have previously identified distinct functional outcomes in lung alveolar septal endothelium on activation of TRPV4, a Ca channel in the vanilloid transient receptor potential family, or the ?1G T-type voltage-gated Ca 2+ 2+ channel. Despite equivalent whole-cell Ca2+ transients in the extremely thin septal endothelium, TRPV4 only increases endothelial permeability while the T-channel only increases endothelial surface expression of P- selectin. As a result, we propose a critical paradigm shift, from a global perspective of Ca2+-dependent signaling to one where Ca2+ microdomains, orchestrated by mitochondrial-dependent Ca2+ buffering, are organized to yield discrete functional outcomes within lung microvascular endothelial cells. Our preliminary data suggest discrete localization of these Ca2+channels and distribution of mitochondria even into the attenuated cell periphery in lung microvascular endothelium in situ. Further, we have documented that mitochondrial bioenergetic dysfunction leads to loss of domain constraints with greater spread and duration of TRPV4-mediated Ca2+ transients and increased endothelial permeability in lung microvascular endothelium. Collectively, these observations led us to the HYPOTHESIS that in lung microvascular endothelium, mitochondrial Ca2+ buffering constrains Ca2+ influx via TRPV4 or the T-type channel to spatially delimited cytosolic microdomains yielding specificity of functional outcomes, constraints lost with mitochondrial dysfunction.
Our SPECIFIC AIMS are to: 1) determine the contribution of mitochondria to buffering of the spatial spread, dynamics and functional specificity of Ca2+ signals on activation of TRPV4 or T-type Ca2+ channels, and 2) determine the extent to which mitochondrial bioenergetic dysfunction decreases the threshold for and specificity of functional outcomes on activation of TRPV4 or T-type Ca2+ channels. We will utilize innovative high-speed hyperspectral excitation scanning imaging and novel analytical tools to detect and interpret signal dynamics with high spatial and temporal resolution. These data will be interpreted in context of localized functional outcomes, in nave endothelium, in endothelium after disruption of mitochondrial- dependent buffering and after initiation of mitochondrial bioenergetic dysfunction in the intact lung with hyperoxia and Pseudomonas aeruginosa-induced sepsis. We predict that such dysfunction will lead to blurring of specificity for Ca2+ signaling, altering the set point from which lung endothelium interprets Ca2+ signaling with mechanical stress. This work will provide the first insight into mechanisms underlying Ca2+ microdomains in lung microvascular endothelium. To accomplish this, we have assembled an outstanding team with expertise spanning from structural and functional determinants of endothelial permeability, development and use of novel tools, and modeling of signaling domains/networks to bioenergetics and sepsis.

Public Health Relevance

Calcium entry into lung endothelium has traditionally been viewed as causing homogeneous all or none responses. In contrast, this project will test the idea that mitochondria play a key role in limiting calcium signals from disparate calcium channels to discrete functions in lung endothelial cells. We predict that this specificity will be lost with mitochondrial dysfunction in hyperoxia and sepsis, increasing susceptibility to inflammation and to lung injury with mechanical stress.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL066299-16A1
Application #
9416711
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Xiao, Lei
Project Start
Project End
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of South Alabama
Department
Type
DUNS #
172750234
City
Mobile
State
AL
Country
United States
Zip Code
36688
Khozhukhar, Natalya; Spadafora, Domenico; Rodriguez, Yelitza et al. (2018) Elimination of Mitochondrial DNA from Mammalian Cells. Curr Protoc Cell Biol 78:20.11.1-20.11.14
Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn et al. (2018) A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods. J Biophotonics 11:
Lin, Mike T; Balczon, Ron; Pittet, Jean-Francois et al. (2018) Nosocomial Pneumonia Elicits an Endothelial Proteinopathy: Evidence for a Source of Neurotoxic Amyloids in Critically Ill Patients. Am J Respir Crit Care Med :
Parker, James C (2018) Mitochondrial damage pathways in ventilator induced lung injury (VILI): an update. J Lung Health Dis 2:18-22
Balczon, Ron; Morrow, K Adam; Zhou, Chun et al. (2017) Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids. FASEB J 31:2785-2796
Shokolenko, Inna N; Alexeyev, Mikhail F (2017) Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 22:835-853
Morrow, K Adam; Frank, Dara W; Balczon, Ron et al. (2017) The Pseudomonas aeruginosa Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant. Handb Exp Pharmacol 238:67-85
Blair, Leslie A; Haven, April K; Bauer, Natalie N (2016) Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium. Respir Res 17:133
Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F (2016) Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number. PLoS One 11:e0152705
Jian, Ming-Yuan; Liu, Yanping; Li, Qian et al. (2016) N-cadherin coordinates AMP kinase-mediated lung vascular repair. Am J Physiol Lung Cell Mol Physiol 310:L71-85

Showing the most recent 10 out of 122 publications