Mucosal inflammatory responses involve the early accumulation of neutrophils (PMN). Without efficient PMN clearance at sites of infiltration, PMN can accumulate and contribute to chronic inflammatory conditions, including ulcerative colitis (UC) and Crohn's disease (CD). Within these diseases, there is significant interest in defining components of the inflammatory microenvironment as a window to understanding molecular mechanisms of progression or resolution. Our ongoing studies for this renewal application have revealed that PMN transepithelial migration (TEM) results in significant extracellular acidosis, in part through generation of large amounts of lactate. Moreover, we demonstrate that PMN-derived adenosine (Ado) significantly promotes pH homeostasis within the mucosal microenvironment. Based on thes new studies, we hypothesize that PMN-derived Ado signaling elicits an adaptive tissue response by promoting pH homeostasis to inflammatory acidity.
Three specific aims are directed at testing this hypothesis:
In Specific Aim 1, we will elucidate the lactate release and signaling axis in intestinal epithelia.
In Specific Aim 2, we will extend preliminary data to determine the mechanism(s) of Ado-mediated pH homeostasis during PMN TEM.
Specific Aim 3 will utilize murine models to probe the role of pH homeostasis in protection afforded by Ado in vivo. The overall aim of this proposal is to identify novel metabolic signaling mediated by Ado within the mucosa during inflammatory acidosis.

Public Health Relevance

The Inflammatory Bowel Diseases (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), are diseases of the gastrointestinal tract that result from abnormal immune response to luminal antigens in genetically-susceptible individuals. IBD represents a disease of major interest, with nearly 3 million American afflicted with this chronic inflammatory disorder. The proposed studies are designed to identify and harness information from novel, inflammation-related metabolic pathways that promote tissue healing. Such studies should provide new avenues into our understanding of why inflammatory diseases develop, and in particular, how innate immune responses contribute to inflammatory resolution.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK095491-08A1
Application #
10112454
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Greenwel, Patricia
Project Start
2012-06-01
Project End
2024-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
8
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P (2018) A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression. J Innate Immun 10:228-238
Curtis, Valerie F; Cartwright, Ian M; Lee, J Scott et al. (2018) Neutrophils as sources of dinucleotide polyphosphates and metabolism by epithelial ENPP1 to influence barrier function via adenosine signaling. Mol Biol Cell 29:2687-2699
Lee, J Scott; Wang, Ruth X; Alexeev, Erica E et al. (2018) Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 293:6039-6051
Alexeev, Erica E; Lanis, Jordi M; Kao, Daniel J et al. (2018) Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. Am J Pathol 188:1183-1194
Chun, Carlene; Zheng, Leon; Colgan, Sean P (2017) Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radic Biol Med 105:86-92
Glover, Louise E; Colgan, Sean P (2017) Epithelial Barrier Regulation by Hypoxia-Inducible Factor. Ann Am Thorac Soc 14:S233-S236
Colgan, Sean P; Campbell, Eric L (2017) Oxygen metabolism and innate immune responses in the gut. J Appl Physiol (1985) 123:1321-1327
Kao, Daniel J; Saeedi, Bejan J; Kitzenberg, David et al. (2017) Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 85:
Taylor, Cormac T; Colgan, Sean P (2017) Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 17:774-785
Lanis, Jordi M; Kao, Daniel J; Alexeev, Erica E et al. (2017) Tissue metabolism and the inflammatory bowel diseases. J Mol Med (Berl) 95:905-913

Showing the most recent 10 out of 63 publications