Core D will be responsible for comprehensive histopathologic analysis of renal tissue samples generated by Projects 1-4, and for analysis (ELISA) of TGF-01 in urine and plasma samples generated by Project 4. Core D will provide high quality, reproducible immunostains for markers of proliferation (Projects 1-4), TGF-p signaling (Projects 1-4), cell cycle regulation (Projects 1-4), MAPK signaling (Projects 1-4), and fibrosis (Projects 1-4). Core D staff will be responsible for troubleshooting protocols, validation and standardization of antibodies for human, porcine, and murine targets, computer-assisted image capture, and semiquantitative and quantitative analysis of histopathologic features. Guidance with interpretation of data generated from these samples will be provided by Core D staff, which has expertise and experience in dissecting signaling pathways relevant to the respective projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL085307-04
Application #
8127941
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$184,039
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Saad, Ahmed; Dietz, Allan B; Herrmann, Sandra M S et al. (2017) Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. J Am Soc Nephrol 28:2777-2785
Wang, Wei; Saad, Ahmed; Herrmann, Sandra M et al. (2016) Changes in inflammatory biomarkers after renal revascularization in atherosclerotic renal artery stenosis. Nephrol Dial Transplant 31:1437-43
Kashyap, Sonu; Warner, Gina M; Hartono, Stella P et al. (2016) Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. Am J Physiol Renal Physiol 310:F372-84
Kwon, Soon Hyo; Tang, Hui; Saad, Ahmed et al. (2016) Differential Expression of microRNAs in Urinary Extracellular Vesicles Obtained From Hypertensive Patients. Am J Kidney Dis 68:331-332
Saad, Ahmed; Zhu, Xiang-Yang; Herrmann, Sandra et al. (2016) Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Res Ther 7:128
Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S et al. (2016) Atherosclerotic renal artery stenosis is associated with elevated cell cycle arrest markers related to reduced renal blood flow and postcontrast hypoxia. Nephrol Dial Transplant 31:1855-1863
Zhu, Xiang-Yang; Ebrahimi, Behzad; Eirin, Alfonso et al. (2015) Renal Vein Levels of MicroRNA-26a Are Lower in the Poststenotic Kidney. J Am Soc Nephrol 26:1378-88
Rhee, Eugene P; Clish, Clary B; Pierce, Kerry A et al. (2015) Metabolomics of renal venous plasma from individuals with unilateral renal artery stenosis and essential hypertension. J Hypertens 33:836-42
Saad, Ahmed; Herrmann, Sandra M; Textor, Stephen C (2015) Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease? Physiology (Bethesda) 30:175-82
Widmer, R Jay; Flammer, Andreas J; Lerman, Lilach O et al. (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128:229-38

Showing the most recent 10 out of 128 publications