We propose to submit a new PPG application to facilitate study of the role of the innate immune system in atherogenesis. Once initiated, atherosclerosis has all the characteristics of a chronic inflammatory disease and each Project Leader of the proposed PPG has contributed importantly to the recognition that immunological mechanisms play a central role in modulating disease progression. In vivo studies and our own data suggest that TLRs, which play critical roles in pathogen recognition, also modify atherosclerosis by mediating inflammatory responses to modified lipoproteins and proatherogenic ligands. We propose to use a combination of in vitro and in vivo approaches to understand the regulation of innate immune responses to relevant """"""""pathogens"""""""", and their impact on inflammation and atherosclerosis. There is extensive evidence that PPARg and PPARd ligands inhibit inflammatory processes, including TLR-dependent mechanisms, and we will use a combination of molecular, cellular and genomics approaches to understand how they control programs of inflammatory gene expression in macrophages and other cells in the artery. Specifically, we will test the hypothesis that NCoR/SMRT/SUMOylation-dependent pathway plays an important role in vitro and in vivo in mediating the anti-inflammatory and anti-atherogenic effects of PPARg and that PPARd regulates the inflammatory state by control of the concentrations of free and nuclear receptor-bound fractions of the co-repressors BCL-6 and SMRT. The relevance of these observations for atherogenesis will be tested using a variety of unique gene targeted murine models. TLRs of innate immunity sense pathogens, both exogenous and endogenous and induce proinflammatory, proatherogenic responses in macrophages and other cells. Using a variety of unique genetic models, we will determine the coreceptors that pair with TR2 to promote atherosclerosis, the ligands with which they interact, and the molecular and cellular mechanisms responsible. A third focus on innate immunity will be on innate B-1 cells and the IgM natural antibodies (NAbs) they secrete, which appear to target oxidation-specific epitopes as found on OxLDL and apoptotic cells. Using reconstituted mice in which all plasma IgM are NAbs, we will explore their role in atherosclerosis and homeostasis. We will explore the regulation of B-1 cells by TLRs and by nuclear receptors and determine the molecular pathways by which this occurs. In summary, our studies will lead to an increased understanding of the innate network of immune regulation, which could lead to novel therapeutic options to control inflammation and atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL088093-03
Application #
7851224
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Kirby, Ruth
Project Start
2008-05-15
Project End
2013-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
3
Fiscal Year
2010
Total Cost
$2,569,768
Indirect Cost
Name
University of California San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Woller, Sarah A; Choi, Soo-Ho; An, Eun Jung et al. (2018) Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 23:2667-2677
Jeong, Se-Jin; Kim, Sinai; Park, Jong-Gil et al. (2018) Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Autophagy 14:120-133
Choi, Soo-Ho; Wallace, Aaron M; Schneider, Dina A et al. (2018) AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight 3:
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Wei, Zong; Yoshihara, Eiji; He, Nanhai et al. (2018) Vitamin D Switches BAF Complexes to Protect ? Cells. Cell 173:1135-1149.e15
Tsimikas, Sotirios; Fazio, Sergio; Ferdinand, Keith C et al. (2018) NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J Am Coll Cardiol 71:177-192
Winkels, Holger; Ley, Klaus (2018) Natural Killer Cells at Ease: Atherosclerosis Is Not Affected by Genetic Depletion or Hyperactivation of Natural Killer Cells. Circ Res 122:6-7
Liu, Chao; Han, Tianxu; Stachura, David L et al. (2018) Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 9:1310
Que, Xuchu; Hung, Ming-Yow; Yeang, Calvin et al. (2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558:301-306
Senders, Max L; Que, Xuchu; Cho, Young Seok et al. (2018) PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J Am Coll Cardiol 71:321-335

Showing the most recent 10 out of 172 publications