CORE A: Given the size, complexity, duration, and scope involved. Core A will be fundamental in enabling the successful establishment and operation of the entire program. All costs for administrative support for the Cores and Projects are included here. Dr. James Loyd will assume ultimate administrative responsibility for the management of this Core. Administrative and clerical support for the entire program will be shared by all Project Leaders, Core Leaders and Co-Investigators. This Core will provide and maintain all of the administrative space and functions for the entire program, including but not limited to, offices for all investigators, an administrative area with secretarial and administrative support, a copy/work room, and a conference room with up to date audiovisual amenities. Administrative functions will include ordering of supplies and equipment, maintenance of all records, keeping and monitoring of budgets, maintenance of the personnel database for grant effort, interactions with University administrative offices and the NIH regarding budgetary and other administrative matters, and scheduling and organizing meetings and presentations. This Core will support all of the computer hardware and software resources for the administrative and clerical functions of the program. This Core will coordinate and support the activities of the Internal Advisory Committee and the External Scientific Advisory Board. The basic functions and objectives of the Core include: quality management of program resources, integration of the program, oversight of deliverables within the time frame, assistance with data management, and leading the vision. To achieve these objectives, detailed plans are presented for administrative structure and leadership, project management, external Scientific Advisory Board, and communication/meetings.

Public Health Relevance

Pulmonary arterial hypertension (PAH) is elevated blood pressure in the lungs, which leads to right heart failure and death. No existing treatments are very effective. This Program Project Grant aims to develop new, more effective treatments based on interventions against the hormonal, metabolic, and signaling defects recently shown to form the molecular basis for disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL108800-02
Application #
8534249
Study Section
Special Emphasis Panel (ZHL1-CSR-Q)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$193,883
Indirect Cost
$69,599
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad et al. (2018) Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. Am J Med 131:702.e7-702.e13
Hemnes, Anna R (2018) Using Omics to Understand and Treat Pulmonary Vascular Disease. Front Med (Lausanne) 5:157
Han, MeiLan K; Arteaga-Solis, Emilio; Blenis, John et al. (2018) Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. Am J Respir Crit Care Med 198:850-858
Brittain, Evan L; Thennapan, Thennapan; Maron, Bradley A et al. (2018) Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 198:13-23
Suzuki, Toshio; Carrier, Erica J; Talati, Megha H et al. (2018) Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 314:L118-L126
Halliday, Stephen J; Xu, Meng; Thayer, Timothy E et al. (2018) Clinical and genetic associations with prostacyclin response in pulmonary arterial hypertension. Pulm Circ 8:2045894018800544
Hemnes, Anna R; Rathinasabapathy, Anandharajan; Austin, Eric A et al. (2018) A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 51:
Meoli, David F; Su, Yan Ru; Brittain, Evan L et al. (2018) The transpulmonary ratio of endothelin 1 is elevated in patients with preserved left ventricular ejection fraction and combined pre- and post-capillary pulmonary hypertension. Pulm Circ 8:2045893217745019
Yan, Ling; Cogan, Joy D; Hedges, Lora K et al. (2018) The Y Chromosome Regulates BMPR2 Expression via SRY: A Possible Reason ""Why"" Fewer Males Develop Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 198:1581-1583
Gaskill, Christa F; Carrier, Erica J; Kropski, Jonathan A et al. (2017) Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 127:2262-2276

Showing the most recent 10 out of 56 publications