The ability to link elementary actions together to perform a meaningful sequence of movements is a key component of voluntary motor behavior. Many of our daily motor tasks (e.g., handwriting, typing, etc.) depend on attaining a high level of skill in the performance of sequential movements. Consequently, the neural basis of skill acquisition and retention is a fundamental problem of systems neuroscience. To explore the cortical involvement in this behavior we will use optical imaging and single neuron recording to define patterns of activity in the primary motor cortex (Ml) and the dorsal premotor area (PMd) as monkeys learn to perform and practice sequences of movements. We will monitor activity at various times in relation to an animal's level of skill acquisition and task performance. The data from optical imaging and single neuron recording are likely to provide fundamental insights into the neural basis of motor skills. However, both techniques are correlational approaches. To test causality, we will make micro-injections of various pharmacolgic agents in M1 and the PMd to disrupt local neuron activity, protein synthesis and ERK signaling. We will determine the effects of these micro-injections on the acquisition, performance and retention of motor skills. Taken together, the proposed studies will provide some novel information on the cortical mechanisms that underlie a critical aspect of human behavior- the acquisition and retention of motor skills. In addition, there is growing evidence that many of the mechanisms of plasticity that are used to acquire new skills may also be available to promote recovery of function following traumatic brain injury or stroke. Thus, the new insights gained from the proposed experiments may suggest novel rehabilitation strategies for restoring motor function.

Public Health Relevance

The proposed work is central to the problem of understanding the mechansims where practice leads to to reorganization of the human motor system in the face of aging, neurodeneration, stroke or brain injury. Understanding these mechansims has an impact on the design of therapies directed at preserving function, developing compensator movements and ultimately, developing novel motor capacity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS044393-10
Application #
8529622
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$263,627
Indirect Cost
$6,645
Name
University of California Santa Barbara
Department
Type
DUNS #
094878394
City
Santa Barbara
State
CA
Country
United States
Zip Code
93106
Kahn, Ari E; Mattar, Marcelo G; Vettel, Jean M et al. (2017) Structural Pathways Supporting Swift Acquisition of New Visuomotor Skills. Cereb Cortex 27:173-184
Ramkumar, Pavan; Acuna, Daniel E; Berniker, Max et al. (2016) Chunking as the result of an efficiency computation trade-off. Nat Commun 7:12176
Ohbayashi, Machiko; Picard, Nathalie; Strick, Peter L (2016) Inactivation of the Dorsal Premotor Area Disrupts Internally Generated, But Not Visually Guided, Sequential Movements. J Neurosci 36:1971-6
Crossley, Matthew J; Horvitz, Jon C; Balsam, Peter D et al. (2016) Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning. J Neurophysiol 115:240-54
Helie, Sebastien; Roeder, Jessica L; Vucovich, Lauren et al. (2015) A neurocomputational model of automatic sequence production. J Cogn Neurosci 27:1412-26
Bassett, Danielle S; Yang, Muzhi; Wymbs, Nicholas F et al. (2015) Learning-induced autonomy of sensorimotor systems. Nat Neurosci 18:744-51
Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R et al. (2015) The time course of explicit and implicit categorization. Atten Percept Psychophys 77:2476-90
Glaser, Joshua I; Zamft, Bradley M; Church, George M et al. (2015) Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization. PLoS One 10:e0131593
Overduin, Simon A; d'Avella, Andrea; Roh, Jinsook et al. (2015) Representation of Muscle Synergies in the Primate Brain. J Neurosci 35:12615-24
Wymbs, Nicholas F; Grafton, Scott T (2015) The Human Motor System Supports Sequence-Specific Representations over Multiple Training-Dependent Timescales. Cereb Cortex 25:4213-25

Showing the most recent 10 out of 114 publications