The muscular dystrophies, many caused by mutations in genes encoding proteins of the dystrophin complex, are among the most prevalent and devastating human diseases. No cures exist and current treatments that slow muscle degeneration are largely ineffective. The goal of this application is to apply basic knowledge of several muscular dystrophies to developing therapeutic approaches. In project 1, Jeffrey Chamberlain will isolate alternative types of myogenic stem cells, correct the primary genetic lesion in these cells by gene transfer, and explore the use of such cells for transplantation into syngeneic, dystrophic mice. He will generate myogenic stem cells from dystrophic muscle fibroblasts and explore their ability to generate new muscle tissue in vitro and in vivo and explore the therapeutic use of pericytes isolated from dystrophic muscle. In project 2, Stephen Tapscott will expand the cell therapy approach by examining muscle cell transplantation in the canine model of muscular dystrophy. Enhancement of migration and engraftment of transplanted donor cells will be explored by modulating signaling pathways and extracellular matrix components and genetic manipulations. Finally, specific muscle derived cell populations will be compared for their ability to reconstitute canine skeletal muscle in vivo. In project 3, Stephen Hauschka will modify muscle-specific regulatory cassettes to provide high expression in human muscle cultures. Modified cassettes will then be tested in vivo for expression of therapeutic proteins after AAV and Lentiviral delivery to human muscle xenografts in immunodeficient mice. Clonal satellite cell assays and analysis of human muscle fiber regeneration following xenograft injury will determine whether the satellite cell pool has been stably transduced. In project 4, Stanley Froehner will study a new compensatory gene, NPC1, which markedly reduces the severity of the dystrophic phenotype in mdx mouse muscle. The mechanism of NPC1 phenotype amelioration and its applicability to LGMDs will be studied. Two core facilities will serve the participating laboratories.

Public Health Relevance

Our goal is to develop methods that could be used to treat the muscular dystrophies (MDs). Stem cell therapy is a promising approach, but many limitations prevent its implementation at present. Our studies are designed to identify an accessible source of muscle stem cells that could be used for autologous stem cell therapies, and to genetically manipulate those cells to produce the protein missing in common MDs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS046788-09
Application #
8233488
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Porter, John D
Project Start
2003-07-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$1,221,198
Indirect Cost
$343,785
Name
University of Washington
Department
Physiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L et al. (2015) A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc Natl Acad Sci U S A 112:12864-9
Muir, Lindsey A; Nguyen, Quynh G; Hauschka, Stephen D et al. (2014) Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. Mol Ther Methods Clin Dev 1:14025
Parker, Maura H; Tapscott, Stephen J (2013) Expanding donor muscle-derived cells for transplantation. Curr Protoc Stem Cell Biol Chapter 2:Unit 2C.4
Gantz, Jay A; Palpant, Nathan J; Welikson, Robert E et al. (2012) Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS One 7:e46971
Parker, Maura H; Loretz, Carol; Tyler, Ashlee E et al. (2012) Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells 30:2212-20
Himeda, Charis L; Tai, Phillip W L; Hauschka, Stephen D (2012) Analysis of muscle gene transcription in cultured skeletal muscle cells. Methods Mol Biol 798:425-43
Johnson, Eric K; Zhang, Liwen; Adams, Marvin E et al. (2012) Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One 7:e43515
Tai, Phillip W L; Smith, Catherine L; Angello, John C et al. (2012) Analysis of fiber-type differences in reporter gene expression of ?-gal transgenic muscle. Methods Mol Biol 798:445-59
Suga, Tomohiro; Kimura, En; Morioka, Yuka et al. (2011) Muscle fiber type-predominant promoter activity in lentiviral-mediated transgenic mouse. PLoS One 6:e16908
Gonçalves, Manuel A F V; Janssen, Josephine M; Nguyen, Quynh G et al. (2011) Transcription factor rational design improves directed differentiation of human mesenchymal stem cells into skeletal myocytes. Mol Ther 19:1331-41

Showing the most recent 10 out of 32 publications