(Core B) The primary goal of the Neuropathology Core (Core B) is to provide high quality human fetal, neonatal and pediatric brain tissues for all the components of the program project. In addition, Core B will also collaborate with researchers and project leaders in this PPG to characterize cell lineages in the developing human brains and develop state-of-the-art molecular markers that will facilitate the discovery and characterizations of neuronal and glial lineages during normal human brain development and in hypoxic ischemic injury conditions. Core B will provide full-time histopathology services that facilitate the progress among the research projects in this PPG as well as coordinate activities with the internal and external advisory committees. In essence, the aim of the Neuropathology Core is to function as a centralized facility where human brain tissues and advances in histopathology techniques can be utilized to provide support and integration of services for all investigators. The core director will work with the project leaders and make decisions regarding the use of core services. As an active member of the PPG, the core director will participate in weekly meetings on Fridays regarding administrative and scientific matters such as research directions, requests for specific human tissues, data analyses, collaborations and presentations of data. The core director, in consultation with Dr. Rowitch, Dr. Alveraz-Buylla and Dr. Kriegstein, will evaluate the specific needs and cost-effectiveness in order to maximize the service of Core B to each research project. The core director will ensure that quality control is provided at the highest level. Additional quality control will be achieved through the use of our internal and external advisory committees.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Sorrells, Shawn F; Paredes, Mercedes F; Cebrian-Silla, Arantxa et al. (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377-381
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Nguyen, Vien; Sabeur, Khalida; Maltepe, Emin et al. (2018) Sonic Hedgehog Agonist Protects Against Complex Neonatal Cerebellar Injury. Cerebellum 17:213-227
Shiow, Lawrence R; Favrais, Geraldine; Schirmer, Lucas et al. (2017) Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia 65:2024-2037
Petersen, Mark A; Ryu, Jae Kyu; Chang, Kae-Jiun et al. (2017) Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron 96:1003-1012.e7
Watanabe, Momoko; Buth, Jessie E; Vishlaghi, Neda et al. (2017) Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Rep 21:517-532
Sabo, Jennifer K; Heine, Vivi; Silbereis, John C et al. (2017) Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 81:560-571
Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben et al. (2016) Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351:379-84
Lindquist, Robert A; Guinto, Cristina D; Rodas-Rodriguez, Jose L et al. (2016) Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nat Commun 7:11628
Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M et al. (2016) Brain size and limits to adult neurogenesis. J Comp Neurol 524:646-64

Showing the most recent 10 out of 15 publications