Project 1: Adolescents'use of amphetamine drugs is a major public health concern, as 11% of high school seniors have used methamphetamine or a pharmaceufical amphetamine taken other than for prescribed purposes (MTF, 2008). Interoception refers to sensing and processing the internal body state via afferent Cfibers, which is integrated in the insular cortex. Previous invesfigafions have linked insular cortex functioning to aspects of addiction. However, the precise role of the interoceptive system and insular cortex in the development of substance dependence is unclear. Here, we hypothesize that the insular cortex is hyporesponsive to interoceptive stimulation, but hyper-reactive to drug cues in adolescents at risk for substance dependence based on repeated experimentation during youth. In this project, we will compare activity of the interoceptive system in response to positively and negatively valenced interoceptive and drug cue stimuli between: (1) at-risk adolescents who are current users of amphetamines, (2) resilient adolescents who are former users of amphetamines but stopped without ever meeting dependence criteria, and (3) control adolescents with no history of amphetamines use.
The aims are: (1) to determine the role of the insula in processing interoceptive information in teens at risk for amphetamine dependence, teens who appear resilient to amphetamine dependence, and healthy control adolescents;(2) to determine the role of the insula in processing cue-related informafion in teens at risk for amphetamine dependence, teens who have been resilient to amphetamine dependence, and healthy control adolescents;(3) to modify neuroimaging paradigms in response to Project 3 (animal studies) to better characterize the role of interoceptive circuitry in the direct posifive (high) versus negafive (withdrawal/hangover) effects among teens at risk for amphetamine dependence;and (4) examine the development of the interoceptive system in adolescence by comparing adolescent controls and adult controls (from Project 2) on activation patterns to interoceptive and drug cue tasks. Together, these studies will help determine how interoceptive dysregulation plays a role in putting adolescents at risk for amphetamine use. These insights will be used in future studies aimed at altering the reactivity of the insular cortex as a way of preventing or treating substance dependence. Combining results from Projects 1 and 2 will yield important insights into the role of the insular cortex and interocepfive functioning in risk for amphetamine dependence in general. Finally, the outcome of this study will prepare us for longitudinal studies of interoceptive dysfunction in a P50 extension of this Center.

Public Health Relevance

Interocepfive processing or how gut feelings regulate the urge to use is not well understood. Here, we examine adolescent amphetamine users, resilient adolescents (used amphetamines, but did not progress to dependence), and comparison teens on how their brains respond to stimulafion of gut feelings. Understanding processing differences between these groups will points to targets for new interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory Grants (P20)
Project #
1P20DA027843-01
Application #
7797724
Study Section
Special Emphasis Panel (ZDA1-MXS-M (09))
Project Start
2009-09-01
Project End
2013-08-31
Budget Start
2010-03-15
Budget End
2011-02-28
Support Year
1
Fiscal Year
2010
Total Cost
$101,598
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Blair, Melanie A; Stewart, Jennifer L; May, April C et al. (2018) Blunted Frontostriatal Blood Oxygen Level-Dependent Signals Predict Stimulant and Marijuana Use. Biol Psychiatry Cogn Neurosci Neuroimaging 3:947-958
Huang, He; Thompson, Wesley; Paulus, Martin P (2017) Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise. Biol Psychiatry 82:440-446
Gowin, Joshua L; May, April C; Wittmann, Marc et al. (2017) Doubling down: increased risk-taking behavior following a loss by individuals with cocaine use disorder is associated with striatal and anterior cingulate dysfunction. Biol Psychiatry Cogn Neurosci Neuroimaging 2:94-103
Gowin, Joshua L; Ball, Tali M; Wittmann, Marc et al. (2017) Corrigendum to ""Individualized relapse prediction: Personality measures and striatal and insular activity during reward-processing robustly predict relapse"" [Drug and Alcohol Dependence 152 (2015) 93-101]. Drug Alcohol Depend 175:255
Squeglia, Lindsay M; Ball, Tali M; Jacobus, Joanna et al. (2017) Neural Predictors of Initiating Alcohol Use During Adolescence. Am J Psychiatry 174:172-185
Paulus, Martin P; Huys, Quentin J M; Maia, Tiago V (2016) A Roadmap for the Development of Applied Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging 1:386-392
Mackey, Scott; Olafsson, Valur; Aupperle, Robin L et al. (2016) Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum. Brain Imaging Behav 10:730-8
Harlé, Katia M; Zhang, Shunan; Ma, Ning et al. (2016) Reduced Neural Recruitment for Bayesian Adjustment of Inhibitory Control in Methamphetamine Dependence. Biol Psychiatry Cogn Neurosci Neuroimaging 1:448-459
Gowin, Joshua L; Ball, Tali M; Wittmann, Marc et al. (2015) Individualized relapse prediction: Personality measures and striatal and insular activity during reward-processing robustly predict relapse. Drug Alcohol Depend 152:93-101
Oosterwijk, Suzanne; Mackey, Scott; Wilson-Mendenhall, Christine et al. (2015) Concepts in context: Processing mental state concepts with internal or external focus involves different neural systems. Soc Neurosci 10:294-307

Showing the most recent 10 out of 31 publications