The increasing number of elderly people affected by age-related blood malignancies, mainly of the myeloid subtype, is one of the most significant public health challenges today but currently there are no effective treatments. The overall objective of this project is to investigate the role of bone marrow microenvironment in hematopoiesis and age-related leukemia. We previously discovered that deficiency of the lipid phosphatase SHIP enables long-term reconstitution of the hematopoietic bone marrow microenvironment. This proposed study is a continuation of our prior work. We will investigate the role of aged bone marrow microenvironment in normal hematopoiesis (Aim 1), identify and functionally evaluate critical cell types for the hematopoietic niche (Aim 2), and reconstitute aged and pre-leukemic bone marrow microenvironment via SHIP inhibition in vivo (Aim 3). The long-term goal of this project is to develop novel strategies for treatment of deadly blood diseases such as myelodysplastic syndromes, myeloproliferative neoplasms, myelofibrosis and acute myeloid leukemia in elderly people.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM119943-04
Application #
9965982
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Rhode Island Hospital
Department
Type
DUNS #
075710996
City
Providence
State
RI
Country
United States
Zip Code
02903
Zuo, Chunlin; Wang, Lijun; Kamalesh, Raghavendra M et al. (2018) SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Res 6:12
Wang, Lijun; Huang, Jiahui; Moore, Douglas C et al. (2018) SHP2 regulates intramembranous ossification by modifying the TGF? and BMP2 signaling pathway. Bone 120:327-335
Liang, Olin D; So, Eui-Young; Egan, Pamela C et al. (2017) Endothelial to haematopoietic transition contributes to pulmonary arterial hypertension. Cardiovasc Res 113:1560-1573
Wu, Keith Q; Muratore, Christopher S; So, Eui-Young et al. (2017) M1 Macrophage-Induced Endothelial-to-Mesenchymal Transition Promotes Infantile Hemangioma Regression. Am J Pathol 187:2102-2111