This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The process of cell damage following excessive glutamate receptor activation has been termed 'excitotoxicity', and may be involved in a range of disorders including ischemia, seizure activity, Parkinson?s Disease and ALS. Strategies that maintain appropriate metabolic function may be a critical consideration for the design of future therapeutic interventions for excitotoxic injuries. The success of such interventions relies on understanding metabolic demands involved in different types of glutamate excitoxicity. This subproject evaluates mitochondrial function in acute hippocampal slices, to evaluate the mechanisms involved in mitochondrial function changes in situ, following glutamate receptor stimulation. The major emphasis is to evaluate multiple imaging approaches. Fluorescence imaging of intrinsic metabolic signals (NADH and flavoprotein) is an approach which has been validated in many previous biochemical and some imaging studies, but which has received a resurgence of interest because of the application of high resolution imaging to intact preparations. Single- and multi-photon imaging will be used to identify cellular sources of mitochondrial signals, and to study mechanisms underlying signals generated by synaptic stimulation, and by exogenous application of glutamate receptor agonists. The overall goal of this work is to develop approaches that can provide high resolution monitoring of mitochondrial function in complex brain tissue, during the progression of excitotoxic injury.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR015636-06
Application #
7381211
Study Section
Special Emphasis Panel (ZRR1-RI-8 (02))
Project Start
2006-06-01
Project End
2007-04-30
Budget Start
2006-06-01
Budget End
2007-04-30
Support Year
6
Fiscal Year
2006
Total Cost
$177,771
Indirect Cost
Name
University of New Mexico
Department
Neurology
Type
Schools of Medicine
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Yamashiro, Kunihiko; Fujii, Yuki; Maekawa, Shohei et al. (2017) Multiple pathways for elevating extracellular adenosine in the rat hippocampal CA1 region characterized by adenosine sensor cells. J Neurochem 140:24-36
Pan, Rong; Liu, Ke Jian (2016) ZNT-1 Expression Reduction Enhances Free Zinc Accumulation in Astrocytes After Ischemic Stroke. Acta Neurochir Suppl 121:257-61
Kimura-Ohba, Shihoko; Yang, Yi (2016) Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. Oxid Med Cell Longev 2016:6927328
Dai, Xingping; Bragina, Olga; Zhang, Tongsheng et al. (2016) High Intracranial Pressure Induced Injury in the Healthy Rat Brain. Crit Care Med 44:e633-8
Liu, Jie; Weaver, John; Jin, Xinchun et al. (2016) Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells. Mol Neurobiol 53:5935-5947
Welch, J H; Mayfield, J J; Leibowitz, A L et al. (2016) Third trimester-equivalent ethanol exposure causes micro-hemorrhages in the rat brain. Neuroscience 324:107-18
Yang, Yi; Rosenberg, Gary A (2015) Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 1623:30-8
Topper, Lauren A; Baculis, Brian C; Valenzuela, C Fernando (2015) Exposure of neonatal rats to alcohol has differential effects on neuroinflammation and neuronal survival in the cerebellum and hippocampus. J Neuroinflammation 12:160
Pan, Rong; Timmins, Graham S; Liu, Wenlan et al. (2015) Autophagy Mediates Astrocyte Death During Zinc-Potentiated Ischemia--Reperfusion Injury. Biol Trace Elem Res 166:89-95
Nemoto, Edwin M; Bragin, Denis E; Statom, Gloria et al. (2014) Role of microvascular shunts in the loss of cerebral blood flow autoregulation. Adv Exp Med Biol 812:43-49

Showing the most recent 10 out of 118 publications