This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Congenital heart disease affects 0.5% of newborns each year, and approximately 20% of these defects are outflow tract (OFT) defects affecting proper formation of the great arteries of the heart, the aorta and the pulmonary artery. There are several models in mouse of congenital heart disease. However, these models provide an incomplete understanding of pathological events because few molecular markers sufficiently detail OFT anatomy during development and bifurcation into distinct vessels. In our studies of Nkx2.5 promoter regulation we have characterized a transgene that has asymmetric expression in the outflow tract during critical periods of outflow tract formation, expansion and septation. We plan to use these regulatory regions to analyze the relationship of early heart field and splanchnic mesoderm populations through development to formation of the mature great arteries during development. We plan to use this transgenic marker to examine OFT patterning and rotation events in several mouse models of OFT dysgenesis affecting myocardial, endocardial and cardiac neural crest populations. Also, through an analysis of the enhancer regions regulating asymmetric OFT and selective pulmonary artery versus aortic expression, we wish to understand the transcriptional factors and related signaling controlling great artery differentiation and underlying this important form of congenital heart disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016434-08
Application #
7720837
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
8
Fiscal Year
2008
Total Cost
$203,161
Indirect Cost
Name
Medical University of South Carolina
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Soiberman, Uri; Foster, James W; Jun, Albert S et al. (2017) Pathophysiology of Keratoconus: What Do We Know Today. Open Ophthalmol J 11:252-261
Karousou, Evgenia; Misra, Suniti; Ghatak, Shibnath et al. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3-22
Moreno-Rodriguez, Ricardo A; Krug, Edward L; Reyes, Leticia et al. (2017) Linear array of multi-substrate tracts for simultaneous assessment of cell adhesion, migration, and differentiation. Biotechniques 63:267-274
Menon, Vinal; Junor, Lorain; Balhaj, Marwa et al. (2016) A Novel Ex Ovo Banding Technique to Alter Intracardiac Hemodynamics in an Embryonic Chicken System. J Vis Exp :
Dupuis, Loren E; Doucette, Lorna; Rice, A Kittrell et al. (2016) Development of myotendinous-like junctions that anchor cardiac valves requires fibromodulin and lumican. Dev Dyn 245:1029-42
Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G et al. (2016) Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight 1:
Olsen, T R; Mattix, B; Casco, M et al. (2015) Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 13:188-98
Stevens, Shawn M; Brown, LaShardai N; Ezell, Paula C et al. (2015) The Mouse Round-window Approach for Ototoxic Agent Delivery: A Rapid and Reliable Technique for Inducing Cochlear Cell Degeneration. J Vis Exp :
Menon, Vinal; Eberth, John F; Goodwin, Richard L et al. (2015) Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. J Cardiovasc Dev Dis 2:108-124
Dupuis, Loren E; Berger, Matthew G; Feldman, Samuel et al. (2015) Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. J Mol Cell Cardiol 84:70-80

Showing the most recent 10 out of 154 publications