This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Growth, and ultimately the size of an animal is regulated by the nervous system, which integrates genetically hardwired developmental processes together with the plastic process of continuous sensing of an animal's environmental condition and energy state. When growth or energy states are deregulated in humans, disorders such as cancer or obesity can result. How sensory inputs and integration of environmental information by the nervous system influences growth is poorly understood. C. elegans provides a tractable system for defining the molecular and neural basis of body size. C. elegans body size is partly regulated by sensory perception and food signals, suggesting that the sensory system regulates body size in response to changing environmental conditions. Our previous work demonstrates that the KIN-29 Salt-Inducible Kinase (SIK) pathways acts in the chemosensory neurons (CNs) to regulate sensory gene expression, body size and food-related behaviors. We postulate that correct regulation of sensory gene expression is necessary to appropriately acquire environmental signals, thereby regulating sensory inputs into pathways important for body size. SIK function is involved in feeding/fasting responses, and is a regulator of the TGFbeta pathway implicated in growth control in both mammals and in C. elegans. Conservation of SIK function from humans to C. elegans offers the opportunity to explore how sensory information may be involved in cell growth and body size. We use genetic and genomic approaches in C. elegans to propose the following:
Aim 1) to define the subset(s) of sensory neurons that regulate body size via KIN-29;
Aim 2) define the complete set of sensory genes regulated by KIN-29;
and Aim 3) to identify novel genes acting in the KIN-29-mediated body size pathway. The study of conserved biological pathways in C. elegans will inform our understanding of human pathways involved in health and disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016464-10
Application #
8360612
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
10
Fiscal Year
2011
Total Cost
$183,918
Indirect Cost
Name
University of Nevada Reno
Department
Physiology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Wang, Xia; Amei, Amei; de Belle, J Steven et al. (2018) Environmental effects on Drosophila brain development and learning. J Exp Biol 221:
Muñoz, Francisco V; Larkey, Linda (2018) THE CREATIVE PSYCHOSOCIAL GENOMIC HEALING EXPERIENCE (CPGHE) AND GENE EXPRESSION IN BREAST CANCER PATIENTS: A FEASIBILITY STUDY. Adv Integr Med 5:9-14
Lim, Sung Don; Yim, Won Choel; Liu, Degao et al. (2018) A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. Plant Biotechnol J :
Francis, Ashish; Kleban, Shawna R; Stephenson, Linda L et al. (2017) Hyperbaric Oxygen Inhibits Reperfusion-Induced Neutrophil Polarization and Adhesion Via Plasmin-Mediated VEGF Release. Plast Reconstr Surg Glob Open 5:e1497
Kim, Minkyung; Fontelonga, Tatiana M; Lee, Clare H et al. (2017) Motor axons are guided to exit points in the spinal cord by Slit and Netrin signals. Dev Biol 432:178-191
Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash et al. (2017) Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila. Ecol Evol 7:619-637
Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A et al. (2017) Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J Bacteriol 199:
Villegas-Negrete, Norberto; Robleto, Eduardo A; Obregón-Herrera, Armando et al. (2017) Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS One 12:e0179625
Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung et al. (2016) Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling. Neural Dev 11:18
Blumröder, R; Glunz, A; Dunkelberger, B S et al. (2016) Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. Genes Brain Behav 15:647-59

Showing the most recent 10 out of 291 publications