This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Herpes simplex virus (HSV) is a common and significant pathogen, which causes cold and genital sores and blindness. The lifecycle of HSV has two distinct phases: lytic and latent infections. A pivotal HSV protein in determining the switch between lytic and latent infections is infected cell protein 0 (ICP0). ICP0 is a 110-KDa nuclear phosphoprotein that strongly transactivates viral gene expression, degrades cellular proteins in nuclear domain (ND) 10, and inhibits the anti-viral response of cellular interferons (IFNs). IFNs are secreted cellular immunomodulatory factors that upregulate the expression of ND10-associated proteins to limit the spread and replication of viruses. Genetics studies have indicated that the ND10-associated protein, promyelocytic leukemia (PML), plays an important role in IFN-mediated inhibition of HSV replication. Thus, ICP0 and PML interactions via IFNs likely govern the type of infection HSV will establish. The long-term goal of our studies is to understand at the molecular level how virus-cell interactions affect HSV infection. The objective of this proposal is to determine how ICP0 and PML interactions modulate the virus-host response. Our central hypothesis is that ICP0 impairs the anti-viral activity of PML that, in turn, is required for efficient viral replication. To test this hypothesis, we will use a variety of genetic, biochemical, and cell biology approaches. For this purpose, we will determine the contributions of PML (Aim 1) and ICP0 (Aim 2) motifs in regulating the virus-host response. Results from these studies are expected to lead to novel anti-viral therapies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016475-08
Application #
7720194
Study Section
Special Emphasis Panel (ZRR1-RI-7 (02))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
8
Fiscal Year
2008
Total Cost
$43,371
Indirect Cost
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Haimov, Ora; Sehrawat, Urmila; Tamarkin-Ben Harush, Ana et al. (2018) Dynamic interactions of eIF4G1 with eIF4E and eIF1 underlie scanning dependent and independent translation. Mol Cell Biol :
Murakami, Ryo; Singh, Chingakham Ranjit; Morris, Jacob et al. (2018) The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation. Mol Cell Biol 38:
Paper, Janet M; Mukherjee, Thiya; Schrick, Kathrin (2018) Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14:31
McCarson, Kenneth E; Winter, Michelle K; Abrahamson, Dale R et al. (2018) Assessing complex movement behaviors in rodent models of neurological disorders. Neurobiol Learn Mem :
Rettig, Trisha A; Ward, Claire; Bye, Bailey A et al. (2018) Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing. PLoS One 13:e0190982
Arisz, Steven A; Heo, Jae-Yun; Koevoets, Iko T et al. (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. Plant Physiol 177:1410-1424
Lee, Sungsu; Cheung-See-Kit, Melanie; Williams, Tyler A et al. (2018) The glycosomal alkyl-dihydroxyacetonephosphate synthase TbADS is essential for the synthesis of ether glycerophospholipids in procyclic trypanosomes. Exp Parasitol 185:71-78
Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro et al. (2018) Co-treatment with a C1B5 peptide of protein kinase C? and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 495:962-968
Lee, Soon Goo; Jez, Joseph M (2017) Conformational changes in the di-domain structure of Arabidopsis phosphoethanolamine methyltransferase leads to active-site formation. J Biol Chem 292:21690-21702
Pook, Victoria G; Nair, Meera; Ryu, KookHui et al. (2017) Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep 7:5714

Showing the most recent 10 out of 651 publications