This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.This project studies the pathogenesis of Borrelia burgdorferi that causes Lyme disease, the most common vectorborne illness in North America and Europe. Over 20,000 people contract Lyme disease annually in the United States alone. Lyme disease is a multi-system disorder that can result in arthritis, neurological abnormalities, carditis and cutaneous lesions such as erythema migrans and acrodermatitis chronica atrophicans. Up to 10% Lyme disease patients may develop post-treatment Lyme syndrome, a mysterious illness that can not be cured. As a slow growing extracellular bacterium with a doubling time of approximately 8 hours in the best in vitro conditions, B. burgdorferi has a 50% infectious dose (ID50) of less than 100 organisms in the murine host, and can also cause persistent infection despite the development of vigorous immune responses against the pathogen, making itself one of the most invasive microbial pathogens in both humans and animals. The focus is on the following three aspects of the pathogenesis of B. burgdorferi.1. How B. burgdorferi evades initial elimination by phagocytes2. How B. burgdorferi evades specific humoral responses3. How B. burgdorferi causes Lyme arthritis

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR020159-05
Application #
7720430
Study Section
Special Emphasis Panel (ZRR1-RI-5 (01))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
5
Fiscal Year
2008
Total Cost
$86,083
Indirect Cost
Name
Louisiana State University A&M Col Baton Rouge
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Crossland, Nicholas A; Alvarez, Xavier; Embers, Monica E (2018) Late Disseminated Lyme Disease: Associated Pathology and Spirochete Persistence Posttreatment in Rhesus Macaques. Am J Pathol 188:672-682
Cheemarla, Nagarjuna R; Baños-Lara, Ma Del Rocío; Naidu, Shan et al. (2017) Neutrophils regulate the lung inflammatory response via ?? T cell infiltration in an experimental mouse model of human metapneumovirus infection. J Leukoc Biol 101:1383-1392
Cai, S; Batra, S; Del Piero, F et al. (2016) NLRP12 modulates host defense through IL-17A-CXCL1 axis. Mucosal Immunol 9:503-14
Cai, S; Batra, S; Langohr, I et al. (2016) IFN-? induction by neutrophil-derived IL-17A homodimer augments pulmonary antibacterial defense. Mucosal Immunol 9:718-29
Gautam, Uma Shankar; Mehra, Smriti; Kaushal, Deepak (2015) In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 10:e0135208
Mehra, Smriti; Foreman, Taylor W; Didier, Peter J et al. (2015) The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence. Am J Respir Crit Care Med 191:1185-96
Baños-Lara, Ma Del Rocío; Harvey, Lindsey; Mendoza, Alexander et al. (2015) Impact and regulation of lambda interferon response in human metapneumovirus infection. J Virol 89:730-42
Caskey, John R; Embers, Monica E (2015) Persister Development by Borrelia burgdorferi Populations In Vitro. Antimicrob Agents Chemother 59:6288-95
Pornwiroon, Walairat; Bourchookarn, Apichai; Paddock, Christopher D et al. (2015) Immunoproteomic profiling of Rickettsia parkeri and Rickettsia amblyommii. Ticks Tick Borne Dis 6:829-35
Baños-Lara, Ma Del Rocío; Piao, Boyang; Guerrero-Plata, Antonieta (2015) Differential mucin expression by respiratory syncytial virus and human metapneumovirus infection in human epithelial cells. Mediators Inflamm 2015:347292

Showing the most recent 10 out of 101 publications