Since the inception of the Sidney Kimmel Comprehensive Cancer Center (SKCCC) Cell Imaging Core in September 1999, its mission has been to provide state-of-the-art cell and tissue imaging technologies to SKCCC members. Services include light and fluorescence microscopy, stereo and confocal microscopy, infrared imaging, multiwell live cell time lapse imaging, and laser capture microdissection (LCM). Images can be acquired using a variety of video and CCD cameras and then analyzed and manipulated with cutting-edge image analysis software programs. The Core Manager is available for consultation before and during scheduled imaging sessions. Users receive technical support and detailed instruction in the use of all Core equipment. The Core Manager routinely monitors the performance of the Core's equipment and regularly receives updated technical training from manufacturers to meet the constantly evolving needs of the SKCCC membership. A Core Advisory Committee, composed of three senior SKCCC investigators, provides an additional level of oversight of Core operations and provides guidance for the acquisition of new technologies and capabilities. SKCCC-Managed Core Reporting Period: Jan. 1, 2015, to Dec. 31, 2015

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA006973-55S1
Application #
9704349
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Belin, Precilla L
Project Start
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
55
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Jackson, Sadhana; Weingart, Jon; Nduom, Edjah K et al. (2018) The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15:2
Dejea, Christine M; Fathi, Payam; Craig, John M et al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592-597
Gorin, Michael A; Rowe, Steven P; Patel, Hiten D et al. (2018) Prostate Specific Membrane Antigen Targeted 18F-DCFPyL Positron Emission Tomography/Computerized Tomography for the Preoperative Staging of High Risk Prostate Cancer: Results of a Prospective, Phase II, Single Center Study. J Urol 199:126-132
Bharti, Santosh K; Mironchik, Yelena; Wildes, Flonne et al. (2018) Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget 9:15326-15339
Nagai, Kozo; Hou, Lihong; Li, Li et al. (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885-32899
Sturgeon, Kathleen M; Hackley, Renata; Fornash, Anna et al. (2018) Strategic recruitment of an ethnically diverse cohort of overweight survivors of breast cancer with lymphedema. Cancer 124:95-104
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24
Jiang, Wei; Zhou, Xiaoyan; Li, Zengxia et al. (2018) Prolyl 4-hydroxylase 2 promotes B-cell lymphoma progression via hydroxylation of Carabin. Blood 131:1325-1336
Zarif, Jelani C; Antonarakis, Emmanuel S (2018) Targeting ELK1: a wELKome addition to the prostate cancer armamentarium. AME Med J 3:
Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod et al. (2018) The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate 78:140-151

Showing the most recent 10 out of 2393 publications