The Molecular Cytogenetic Shared Resource (MCSR) provides tools for the preparation of human and murine samples suitable for molecular genetic and cytogenetic analysis of the entire genome. The goal is to provide Cancer Center investigators with the whole spectrum of services necessary to analyze the genome at various levels of resolution. These services include the establishment of EBV transformed cell lines and isolation of DNA and mRNA from a variety of tissue culture samples as well as primary biopsies. The facility operates in conjunction with the Genomics Shared Resource to create a direct pipeline for the provision of genomic material for analysis. A full panel of services is provided, from preparation of metaphase chromosomes to the generation of custom designed probes and hybridization for the detection of copy number and structural chromosomal alterations. The MCSR provides analyses at all cytogenetic levels of resolution from standard to spectral karyotyping and from whole chromosome paints to locus-specific probes for unique regions of the genome. MCSR personnel are trained to design targeted, locus-specific probes for regions of interest to investigators. All probes are custom designed and generated in-house. The MCSR also performs hybridizations on paraffin-embedded tissues as well as image acquisition and full data analysis.

Public Health Relevance

The Molecular Cytogenetic Shared Resource provides tools for the preparation of human and murine samples suitable for molecular genetic and cytogenetic analysis of the entire genome that support the translational research mission and goals of the Albert Einstein Cancer Center (AECC). As an NCI designated Cancer Center, AECC contributes to the national effort to reduce morbidity and mortality from cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-41
Application #
8753331
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
41
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
City
Bronx
State
NY
Country
United States
Zip Code
10461
Willis, Ian M; Moir, Robyn D; Hernandez, Nouria (2018) Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Proc Natl Acad Sci U S A 115:12182-12187
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M et al. (2018) Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem 293:4555-4563
Martynova, Elena; Bouchard, Maxime; Musil, Linda S et al. (2018) Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 247:1186-1198
Huang, Kezhen; Mukherjee, Subhajit; DesMarais, Vera et al. (2018) Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 83:1031-1040
Bines, Jose; Tevaarwerk, Amye J (2018) Baby steps: Pregnancy outcomes after human epidermal growth factor receptor 2-targeted therapy. Cancer :
Mathew, Deepti; Wang, Yanhua; Van Arsdale, Anne et al. (2018) Expression of ?V-Tubulin in Secretory Cells of the Fallopian Tube Epithelium Marks Cellular Atypia. Int J Gynecol Cancer 28:363-370
Mao, Kai; Quipildor, Gabriela Farias; Tabrizian, Tahmineh et al. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 9:2394
Entenberg, David; Voiculescu, Sonia; Guo, Peng et al. (2018) A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 15:73-80
Iqbal, Niloy Jafar; Lu, Zhonglei; Liu, Shun Mei et al. (2018) Cyclin-dependent kinase 4 is a preclinical target for diet-induced obesity. JCI Insight 3:
Sharma, Yogeshwar; Liu, Jinghua; Kristian, Kathleen E et al. (2018) In Atp7b-/- Mice Modeling Wilson's Disease Liver Repopulation with Bone Marrowderived Myofibroblasts or Inflammatory Cells and not Hepatocytes is Deleterious. Gene Expr :

Showing the most recent 10 out of 1508 publications