A primary focus of the Koch Institute?s research program is to understand the molecular and cellular changes associated with cancer development and progression and develop new treatments and diagnostic approaches. The Microscopy Core provides state-of-the-art imaging in both cells and in the in vivo setting, which are essential tools for these studies. In the current period, the capabilities of this Core have been expanded and enhanced. This includes: moving into a larger, custom-designed space in the new Koch Institute building; the acquisition of new instrumentation; and the recruitment of a world-renowned expert in intravital imaging, Jeffrey Wyckoff, to the Core?s staff. Notably, in the same period, 78% of Center Members used the Microscopy Core, including investigators from all four Programs. Thus, this Shared Resource is essential to the success of the Koch Institute mission. In the upcoming period, this Core will continue to offer a wide range of state-of-the-art imaging technologies to support the research programs of Center Members. To support its expanded staff, the requested budget for Year 44 is increased 45%, compared to the requested and recommended budget in Year 39. The CCSG budgets of other Koch Institute Cores have been reduced or eliminated to more than offset the proposed increase in this, and other, Cores.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-47
Application #
9487935
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
47
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381
Kimmerling, Robert J; Prakadan, Sanjay M; Gupta, Alejandro J et al. (2018) Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol 19:207
Tang, Li; Zheng, Yiran; Melo, Mariane Bandeira et al. (2018) Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 36:707-716
Holec, Patrick V; Berleant, Joseph; Bathe, Mark et al. (2018) A Bayesian framework for high-throughput T cell receptor pairing. Bioinformatics :
Wong, Madeline Y; Doan, Ngoc Duc; DiChiara, Andrew S et al. (2018) A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production. Biochemistry 57:2814-2827
Danai, Laura V; Babic, Ana; Rosenthal, Michael H et al. (2018) Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 558:600-604
Dubbury, Sara J; Boutz, Paul L; Sharp, Phillip A (2018) CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564:141-145
Tokatlian, Talar; Kulp, Daniel W; Mutafyan, Andrew A et al. (2018) Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Sci Rep 8:16527
Crowell, Laura E; Lu, Amos E; Love, Kerry R et al. (2018) On-demand manufacturing of clinical-quality biopharmaceuticals. Nat Biotechnol :
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388

Showing the most recent 10 out of 904 publications