The Immunology and Cancer Program (Program 3) has been an integral component of the UCCRC for more than 20 years. It has 19 members from 5 departments, and is supported by a total of $7,660,269 in peer-reviewed funding (annual direct costs), with $2,154,936 from the NCI. Over the past grant period, program members have produced a total of 387 peer-reviewed publications, including 11% that were intraprogrammatic and 15% that were interprogrammatic collaborations. It is well established that tumors can express antigens that can be recognized by specific T cells or antibodies. Established immunologic therapies in the clinic include allogeneic bone marrow or blood stem cell transplantation, the monoclonal antibodies Herceptin and Rituxan, and the cytokines IL-2 and IFN-cc. However, as fundamental knowledge of the immune system continues to increase at a rapid pace, the potential for improving upon existing immune-based therapies, as well as for developing new immunotherapeutic approaches, continues to expand. The overall goals of the Immunology and Cancer Program are to foster the best possible research that has relevance for the cancer setting, to support an environment that brings new immunology concepts into preclinical models of anti-tumor immunity, and to translate fundamental discoveries into clinical application. A major accomplishment of the Program is the expansion of the clinical/translational component. These goals are supported by severa key Core Facilities, in particular the Flow Cytometry, Fitch Monoclonal Antibody, Immunohistochemistry, and the Human Immunologic Monitoring Cores. The Immunology and Cancer Program also depends on the services of the cGMP Facility (a UCCRC developing core) for preparation of clinical-grade immunotherapeutic products for clinical administration. By incorporating detailed scientific endpoint monitoring into clinical studies, new key information is being generated that has led to the development of new hypotheses that can then be interrogated back in the basic laboratory. Thus, the Immunology and Cancer Program has evolved into a clear example of bi-directional translational research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-35
Application #
8105348
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
35
Fiscal Year
2010
Total Cost
$26,979
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Zeineddine, Hussein A; Girard, Romuald; Saadat, Laleh et al. (2018) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest :
Kane, Melissa; Deiss, Felicity; Chervonsky, Alexander et al. (2018) A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 92:
Xiao, Annie; Crosby, Jennie; Malin, Martha et al. (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19:205-213
Gamazon, Eric R; Trendowski, Matthew R; Wen, Yujia et al. (2018) Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma. Sci Rep 8:733
Girard, Romuald; Zeineddine, Hussein A; Koskimäki, Janne et al. (2018) Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 122:1716-1721
Day, Kasey J; Casler, Jason C; Glick, Benjamin S (2018) Budding Yeast Has a Minimal Endomembrane System. Dev Cell 44:56-72.e4
Pu, Jinyue; Kentala, Kaitlin; Dickinson, Bryan C (2018) Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors. ACS Chem Biol 13:431-437
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah et al. (2018) Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov 8:37-48
Liu, Hongtao; Zha, Yuanyuan; Choudhury, Noura et al. (2018) WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia. Exp Hematol Oncol 7:1
Nageeb, Shaheen; Vu, Milkie; Malik, Sana et al. (2018) Adapting a religious health fatalism measure for use in Muslim populations. PLoS One 13:e0206898

Showing the most recent 10 out of 668 publications