The recent advances in proteomic instrumentation, methods and informatics have created exciting opportunities in all fields of diabetes research. The information on protein identification and structure provided by mass spectrometry is applicable to nearly all aspects of diabetes and its complications. Mass spectrometry-based proteomics has accelerated the identification of posttranslational modifications, including phosphorylation-site mapping, identification of protein-protein interactions, and changes in protein abundance or compartmentalization, just to name a few examples. However, the rapid rates of growth and change in proteomic technologies have also led to challenges in the translation and availability of these technologies to researchers, from new postdoctoral research fellows to established investigators who are not directly involved in this field. Although many of the fundamental principles of mass spectrometry are relatively straightforward, successful mass spectrometry-based proteomic analysis requires the combination of appropriate experimental design, access to state-of-the-art instrumentation, rigorous analysis of spectral data, and for some studies, bioinformatics tools to manage and interpret large datasets. Indeed, mass spectrometry-based proteomics is a multi-step process, and study design, from the perspectives of mass spectrometry data acquisition and interpretation, plays an important role in experimental success. The overall objective of the Proteomics Core is to provide Joslin researchers with assistance through the workflow of proteomics studies, including experimental design, sample preparation, mass spectrometric analysis, data analysis and interpretation, and bioinformatic tools. The specific objectives of Joslin's Proteomics Core are the following: 1) To assist and provide training in experimental design for proteomics studies. 2) To provide routine and custom mass spectroscopy-based proteomic analyses. 3) To assist with mass spectra analysis, interpretation, and database matching. 4) To develop a results database and incorporate access to bioinformatic tools for the analysis of proteomics data into the results database.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-24
Application #
8060626
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
24
Fiscal Year
2010
Total Cost
$133,310
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob et al. (2018) Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 47:1-15
Cai, Weikang; Xue, Chang; Sakaguchi, Masaji et al. (2018) Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest 128:2914-2926
Nowak, Natalia; Skupien, Jan; Smiles, Adam M et al. (2018) Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int 93:1198-1206
Aguayo-Mazzucato, Cristina; Lee Jr, Terence B; Matzko, Michelle et al. (2018) T3 Induces Both Markers of Maturation and Aging in Pancreatic ?-Cells. Diabetes 67:1322-1331
Bartelt, Alexander; Widenmaier, Scott B; Schlein, Christian et al. (2018) Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24:292-303
Fujisaka, Shiho; Avila-Pacheco, Julian; Soto, Marion et al. (2018) Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep 22:3072-3086
Van Name, Michelle A; Hilliard, Marisa E; Boyle, Claire T et al. (2018) Nighttime is the worst time: Parental fear of hypoglycemia in young children with type 1 diabetes. Pediatr Diabetes 19:114-120
Weisman, Alanna; Lovblom, Leif E; Keenan, Hillary A et al. (2018) Diabetes Care Disparities in Long-standing Type 1 Diabetes in Canada and the U.S.: A Cross-sectional Comparison. Diabetes Care 41:88-95
Panduro, Marisella; Benoist, Christophe; Mathis, Diane (2018) Treg cells limit IFN-? production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A 115:E2585-E2593
McGill, Dayna E; Volkening, Lisa K; Pober, David M et al. (2018) Depressive Symptoms at Critical Times in Youth With Type 1 Diabetes: Following Type 1 Diabetes Diagnosis and Insulin Pump Initiation. J Adolesc Health 62:219-225

Showing the most recent 10 out of 1120 publications