The overall goal of the University of Chicago Cancer Research Center (UCCRC) is to improve the prevention, detection, and treatment of cancer through our basic, clinical, translational, and population research activities. Therefore, the effective procurement, storage, use, and analysis of human biospecimens are of critical importance. Furthermore, the maintenance and expansion of these state-ofthe- art biospecimen procurement and storage facilities is vital to the future success of our cancer programs. To address these critical needs, the existing Laser Capture Microdissection (LCM) Core Facility was dramatically expanded and renamed the Human Tissue Resource Center (HTRC) Core. The mission of the HTRC is to provide cancer investigators with a centralized infrastructure to optimize the efficiency and costs related to research involving human biospecimens. The HTRC now comprises three integrated components: Biospecimen Bank (BSB), Laser Capture Microdissection (LCM), and Pathology Image Analysis (PIA). Currently, the HTRC provides services for the collection of clinicallyannotated human tissues, as well as blood, serum, plasma, and saliva for cancer-related research. In addition, the Core provides collaborative support and services for histopathology, LCM, tissue microarray preparation (TMA), and nucleic acid extraction. In this way, we provide a coordinated, centralized, and dedicated program for the procuring, processing, dispersing, and assessing all types of biospecimens. Over 39 peer-reviewed UCCRC investigators across six Scientific Programs routinely use the HTRC, totaling 70% of Facility usage. Many of these investigators use several of the Facility's components.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-37
Application #
8375725
Study Section
Special Emphasis Panel (ZCA1-RTRB-N)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
37
Fiscal Year
2012
Total Cost
$243,313
Indirect Cost
$85,054
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Trujillo, Jonathan A; Sweis, Randy F; Bao, Riyue et al. (2018) T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. Cancer Immunol Res 6:990-1000
Zeng, Zongyue; Huang, Bo; Huang, Shifeng et al. (2018) The development of a sensitive fluorescent protein-based transcript reporter for high throughput screening of negative modulators of lncRNAs. Genes Dis 5:62-74
Lee, Ji-Hye; Park, Beom Seok; Han, Kang R et al. (2018) Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication. Front Microbiol 9:1466
Cheng, Jason X; Chen, Li; Li, Yuan et al. (2018) RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun 9:1163
Johnson, Marianna B; Hoffmann, Joscelyn N; You, Hannah M et al. (2018) Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 23:59-73
Sweis, Randy F; Zha, Yuanyuan; Pass, Lomax et al. (2018) Pseudoprogression manifesting as recurrent ascites with anti-PD-1 immunotherapy in urothelial bladder cancer. J Immunother Cancer 6:24
Kathayat, Rahul S; Cao, Yang; Elvira, Pablo D et al. (2018) Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun 9:334
Liu, Jun; Eckert, Mark A; Harada, Bryan T et al. (2018) m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 20:1074-1083
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Wood, Kevin; Byron, Elizabeth; Janisch, Linda et al. (2018) Capecitabine and Celecoxib as a Promising Therapy for Thymic Neoplasms. Am J Clin Oncol 41:963-966

Showing the most recent 10 out of 668 publications