The University of Chicago Genomics Core Facility (GCF) is committed to providing on-campus biomedical researchers (ranging from experts in the field of genomics to those unfamiliar with whole genome and bioinformatics approaches) with access to state-of-the-art genomics resources (next- Generation Sequencing, DNA microarrays, Sanger Sequencing and non-array based genotyping). The GCF was created in 2006 through the merger of two existing University of Chicago Facilities (the UCCCC-supported DNA Sequencing and Genotyping Facility and the Functional Genomics Facility). The GCF continued to offer access to the main genomics services already provided (Sanger sequencing, DNA microarrays, and array-associated bioinformatics support), while adding next-generation sequencing (NGS) services and NGS-associated bioinformatics support. The merger provided a single on-campus contact point for end-users to fulfill all their genomics needs while operationally eliminating the need for many duplicate pieces of auxiliary equipment (e.g., Nanodrop, Bio-Analyzer), as well as allowing far greater flexibility in managing the human work force as demand for services shift over time. Currently, the GCF is operating as two tightly interactive data generating subunits, """"""""Next-Generation Sequencing and Microarrays"""""""" and """"""""DNA Sequencing and Genotyping"""""""", housed together in the Knapp Center for Biomedical Discovery (KCBD) since 2009. lllumina and LifeTech NGS services were added in 2010-2011, and an overall GCF Operational Director, was hired in 2011. Also in 2011, the data analysis component ofthe GCF (primarily microarray support) was incorporated into the newly created Bioinformatics Facility at the University of Chicago to avoid duplication of services.

Public Health Relevance

The GCF provides access to state-of-the-art genomics platforms. These resources have become so integral to cutting-edge research in the biological sciences that virtually every investigator will access them on a regular basis making on-campus access to these resources invaluable to both expert and novice genomics investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744832
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$167,427
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Trujillo, Jonathan A; Sweis, Randy F; Bao, Riyue et al. (2018) T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. Cancer Immunol Res 6:990-1000
Zeng, Zongyue; Huang, Bo; Huang, Shifeng et al. (2018) The development of a sensitive fluorescent protein-based transcript reporter for high throughput screening of negative modulators of lncRNAs. Genes Dis 5:62-74
Lee, Ji-Hye; Park, Beom Seok; Han, Kang R et al. (2018) Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication. Front Microbiol 9:1466
Cheng, Jason X; Chen, Li; Li, Yuan et al. (2018) RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun 9:1163
Johnson, Marianna B; Hoffmann, Joscelyn N; You, Hannah M et al. (2018) Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 23:59-73
Sweis, Randy F; Zha, Yuanyuan; Pass, Lomax et al. (2018) Pseudoprogression manifesting as recurrent ascites with anti-PD-1 immunotherapy in urothelial bladder cancer. J Immunother Cancer 6:24
Kathayat, Rahul S; Cao, Yang; Elvira, Pablo D et al. (2018) Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun 9:334
Liu, Jun; Eckert, Mark A; Harada, Bryan T et al. (2018) m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 20:1074-1083
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Wood, Kevin; Byron, Elizabeth; Janisch, Linda et al. (2018) Capecitabine and Celecoxib as a Promising Therapy for Thymic Neoplasms. Am J Clin Oncol 41:963-966

Showing the most recent 10 out of 668 publications