Many complementary and integrative health (CIH) approaches have been shown to be effective for chronic pain and included in guidelines. This evidence of effectiveness is built on hundreds of studies representing millions of research dollars, and the ability to analyze and better compare results across these studies is essential to obtain the full value of this investment. However, useful across-study comparisons which would allow better understanding and targeting of these interventions are hampered by at least two challenges: the lack of common outcome measures and the inability to meaningfully stratify or classify patients. To address the first challenge, in Aim 1 this study will develop and evaluate crosswalks or links between components of the 29-item Patient-Reported Outcomes Measurement Information System (PROMIS) short form (PROMIS-29) and common legacy measures used for chronic pain. In particular, we will create crosswalks/links for the two most commonly used measures for CLBP, including the Roland-Morris Disability Questionnaire (RMDQ) and the Oswestry Disability Index (ODI). In addition, depending on data availability and input from our Advisory Council we will create at least two other crosswalks/links between the PROMIS-29 and other legacy measures for CLBP (e.g., the Back Pain Functional Scale) or legacy measures for other types of chronic pain (e.g., the Neck Disability Index for chronic neck pain). To address the second challenge, in Aim 2 we will evaluate and refine the chronic pain impact stratification scheme proposed by the NIH Research Task Force on chronic low back pain. The proposed scheme uses the Impact Stratification Score (ISS) which is calculated using 9 items from the PROMIS-29. We will first evaluate the ISS and its properties to assess whether they are stable across different samples and determine whether they can be improved. After we have finalized the components and calculation of the ISS, we will examine its effect on the impacts of chronic pain (e.g., health-related quality of life, healthcare utilization, worker productivity) to identify meaningful cut-points to use to stratify chronic pain patients into subgroups who exhibit different levels of chronic pain impact. Three types of data will be used in the analyses to address Aims 1 and 2: data from three large in-house existing datasets, data collected from a national convenience sample using Amazon?s Mechanical Turk (MTurk) crowdsourcing platform, and data from the probability-based nationally representative KnowledgePanel.
Aim 3 will evaluate crowdsourcing as a reliable, efficient method to collect data on individuals with chronic pain through the comparison of its results to what was found using KnowledgePanel.
Millions of research dollars have been spent on studies of the effectiveness of interventions for chronic pain, and there is now a growing list of nonpharmacologic therapies being recommended, especially for patients with chronic low back pain. However, to extract the full value of this research investment, including the answer to the question ?which therapy is most effective??, we must be able to directly compare results across studies; a task which is hampered by two things: the use of different outcome measures and the lack of a stratification scheme which would allow the case mix of baseline samples to be balanced. This project addresses these challenges by developing crosswalks and/or links between the PROMIS-29 and the legacy measures commonly used in these studies, and by further developing and creating cut-points for a proposed chronic pain impact stratification scheme.