? TRANSLATIONAL THERAPEUTICS (TT) The Translational Therapeutics (TT) Program at The Ohio State University Comprehensive Cancer Center (OSUCCC), co-led by David Carbone, MD, PhD, Blake Peterson, PhD, and Elaine Mardis, PhD, unites an outstanding team of 79 basic, translational and/or clinical researchers from 18 departments within The Ohio State University (OSU) Colleges of Medicine, Pharmacy, and Veterinary Medicine and Nationwide Children?s Hospital (NCH). The goal of the TT program is to translate advances in solid tumor molecular biology and promising preclinical studies into innovative clinical trials to improve the state of the art in the diagnosis and treatment of solid tumors. Solid tumors are by far the major causes of cancer death in our catchment area (the state of Ohio), dominated by diseases of special interest in this program, including lung, breast, colorectal, head and neck, thyroid, and gynecologic cancers. As a result of existing expertise and collaborative scientific efforts, as well as focused recruitments across a spectrum of disciplines, the TT program exhibits strength in basic and translational research in lung cancer, gastrointestinal malignancies, breast cancer, sarcoma, and glioblastoma, as well as newly enhanced capabilities in drug development.
The Specific Aims of the TT program are to: 1) identify and therapeutically target alterations in solid tumor proliferation and survival signaling pathways; 2) identify tumor-host interactions and target them via small molecule and immunotherapeutic approaches; and 3) develop and improve upon approaches for determining prognosis, selecting appropriate therapies, and evaluating the response to treatment. During the current funding cycle, the TT Program successfully recruited 28 solid tumor clinicians, basic scientists, and physician-scientists. In addition, TT investigators produced 1130 peer-reviewed publications; 178 of these were published in high impact (?10) journals, 16% resulted from intra- programmatic collaborations, and 31% from inter-programmatic collaborations; 74% were multi-institutional; a total of 86% were collaborative publications. TT members collaborated on programmatic grant submissions and were awarded one NCI P01, two U01s, and two UG1s, as well as two T32 training grants. The TT Program has $9.2M in current annual direct costs from peer-reviewed grants, $6.6M (71%) of which is from the NCI. The TT Program is well-integrated with the clinical teams via participation in the multidisciplinary Disease Specific Research Groups (DSRG) and organizes Pan-Disease Investigator-Initiated Trial meetings to catalyze interactions between DSRGs. As such, there were 4,070 accruals to interventional clinical trials during the last funding cycle, of which 3,351 (82%) were therapeutic, including 1,144 (28%) investigator-initiated trials. Future directions focused on the OSUCCC research priorities and cancers relevant to our catchment area and growth in cellular and checkpoint inhibitor research (adult and pediatric), immunogenomics, tumor resistance and tumor heterogeneity and small molecule drug development.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Siegel, Marni B; He, Xiaping; Hoadley, Katherine A et al. (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371-1383
White, Brian S; Lanc, Irena; O'Neal, Julie et al. (2018) A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J 8:35
Owen, Dwight; Chaft, Jamie E (2018) Immunotherapy in surgically resectable non-small cell lung cancer. J Thorac Dis 10:S404-S411
O'Brien, Susan M; Jaglowski, Samantha; Byrd, John C et al. (2018) Prognostic Factors for Complete Response to Ibrutinib in Patients With Chronic Lymphocytic Leukemia: A Pooled Analysis of 2 Clinical Trials. JAMA Oncol 4:712-716
Guo, Sijin; Piao, Xijun; Li, Hui et al. (2018) Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 143:121-133
Sadowski, Abbey R; Gardner, Heather L; Borgatti, Antonella et al. (2018) Phase II study of the oral selective inhibitor of nuclear export (SINE) KPT-335 (verdinexor) in dogs with lymphoma. BMC Vet Res 14:250
Barredo, Julio C; Hastings, Caroline; Lu, Xiamin et al. (2018) Isolated late testicular relapse of B-cell acute lymphoblastic leukemia treated with intensive systemic chemotherapy and response-based testicular radiation: A Children's Oncology Group study. Pediatr Blood Cancer 65:e26928
Kim, So-Youn; Nair, Devi M; Romero, Megan et al. (2018) Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ :
Yadav, Marshleen; Song, Feifei; Huang, Jason et al. (2018) Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Sci Rep 8:5075
Farquhar, Neil; Thornton, Sophie; Coupland, Sarah E et al. (2018) Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. J Pathol Clin Res 4:26-38

Showing the most recent 10 out of 2602 publications