Irradiation, Preclinical Imaging, and Microscopy The Irradiation, Preclinical Imaging, and Microscopy Shared Resource (IPIM) provides a comprehensive array of sophisticated cancer relevant diagnostic imaging and therapeutic instrumentation/techniques for cells, tissues, and large and small animals, with a focus on preclinical work that sets the stage for subsequent rapid clinical translation. Irradiation services are provided with a 137Cs irradiator for use on cells and animals. Optical cellular imaging and electron microscopy provides multiple types of confocal, TIRF and wide-field fluorescence microscopy imaging, as well as scanning and transmission electron microscopy. Rodent imaging components include PET, CT, MRI, Bioluminescence/Fluorescent (Xenogen/IVIS), and VisualSonics Vevo 770 high- frequency ultrasound. Large animal imaging includes MRI, fMRI, CT, PET, ultrasound, fluoroscopy/ angiography, and intra-operative MRI/CT as part of the unique Center for Surgical Innovation (CSI). Since its opening during the current funding period, CSI has enabled a total of 7 peer-reviewed research grants, 5 of which are from NCI. Notable CSI projects include development, imaging, and treatment of a human-porcine xenograft brain tumor model, development of MRI-compatible instrumentation for facilitation of head and neck cancer surgeries performed in the MRI-intraoperative environment, and development of a novel intraoperative nerve imaging agent. The capabilities of the CSI are currently available in only a few of the largest clinical research institutions, and IPIM is distinct in having similar capabilities for use in large animal studies. Since 2015, IPIM facilities have been utilized by 55 NCCC Members from all 4 NCCC Research Programs (CPS [2], CBT [22], ICI [16], TEC [15]). NCCC Funded Member Users represented 72% of Total Users, and we request only 20% of Total IPIM budget from CCSG funding. Examples of NCCC Member-supported projects include dual modality/dual agent imaging (Davis, Pogue and Samkoe [TEC]), fundamental mechanisms associated with membrane traffic control microvascular permeability, angiogenesis and inflammation that drive tumor vasculature and subsequent treatment (Stan, Turk, Fiering, Noelle [ICI] and Pogue [TEC]); and Cherenkov irradiation as a real-time dosimetry tool in the radiation oncology setting (Pogue, Gladstone, Hoopes, and Jarvis [TEC]). In addition to providing outstanding viable imaging, IPIM will focus on accurately combining / co- registering the extensive array of radiological imaging techniques with live cell imaging, molecular targeting and genetics that will lead the way into the next generation of diagnosis and therapy. The resource is staffed by highly qualified research directors and experienced resource managers that maintain instrumentation, provide technical support, educate NCCC researchers, and are instrumental in upgrading IPIM technologies. Recent enhancements have included upgrading of the NCCC small animal 9.4T MRI. Pending improvements include replacement of our small animal CT and whole animal IVIS fluorescent/bioluminescent imagers and a dedicated effort to co-register anatomic imaging parameters with molecular histopathology and genetics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA023108-41
Application #
9855308
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
41
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Rodriguez-Garcia, Marta; Fortier, Jared M; Barr, Fiona D et al. (2018) Aging impacts CD103+ CD8+ T cell presence and induction by dendritic cells in the genital tract. Aging Cell 17:e12733
Shajani-Yi, Zahra; de Abreu, Francine B; Peterson, Jason D et al. (2018) Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non-Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing. Neoplasia 20:256-262
Shee, Kevin; Jiang, Amanda; Varn, Frederick S et al. (2018) Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER+ breast cancer. FASEB J :fj201801241R
Bossé, Yohan; Amos, Christopher I (2018) A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 27:363-379
Pande, Mala; Joon, Aron; Brewster, Abenaa M et al. (2018) Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies. PLoS One 13:e0196245
Szczepiorkowski, Zbigniew M; Burnett, Christine A; Dumont, Larry J et al. (2018) Apheresis buffy coat collection without photoactivation has no effect on apoptosis, cell proliferation, and total viability of mononuclear cells collected using photopheresis systems. Transfusion 58:943-950
Schmit, Stephanie L; Edlund, Christopher K; Schumacher, Fredrick R et al. (2018) Novel Common Genetic Susceptibility Loci for Colorectal Cancer. J Natl Cancer Inst :
Smith, T Jarrod; Sondermann, Holger; O'Toole, George A (2018) Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces. ACS Synth Biol 7:2612-2617
Gorlova, Olga Y; Li, Yafang; Gorlov, Ivan et al. (2018) Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS One 13:e0189498
Moulton, Haley; Tosteson, Tor D; Zhao, Wenyan et al. (2018) Considering Spine Surgery: A Web-Based Calculator for Communicating Estimates of Personalized Treatment Outcomes. Spine (Phila Pa 1976) 43:1731-1738

Showing the most recent 10 out of 1911 publications