Many of the structural and functional abnormalities associated with Fetal Alcohol Spectrum Disorders (FASD) have been uncovered, yet major gaps remain in our understanding of the associated pathogenesis and mechanisms. For example, it is well known that ethanol exposure during gastrulation results in the classic hypoteloric FAS face and midline forebrain dysgenesis; yet, exposure just slightly later, during neurulation, induces expanded midline brain structures and hypertelorism. Interestingly, these abnormalities resemble (phenocopy) those of many genetic ciliopathies, such as Joubert syndrome. The central pathogenic mechanism of ciliopathies is a perturbation of the structure and/or function of primary cilia, hair-like organelles found on most cells that integrate extra- and intra-cellular signals. The proposed research tests the overall novel hypothesis that neurulation-stage ethanol exposure induces a ?transient ciliopathy? (i.e., a temporary disruption of primary cilia function) that is the basic cellular mechanism for the expansion of midline brain structures and hyperteloric dysmorphologies. The proposed experiments are designed to meet the following integrated specific aims.
Aim 1 will define the direct effects of early prenatal ethanol exposure on primary cilia structure and function. For this, confocal microscopy and immunohistochemistry will be used to examine the effects of ethanol on primary cilia number while gene expression assays will be used to assess cilia function. It is hypothesized that ethanol exposure causes abnormal ciliary number and/or function, reducing activation of the Shh signaling pathway.
Aim 2 will characterize the secondary cellular pathogenic events in the neural tube resulting from an ethanol-induced transient ciliopathy. The experiments in this aim will test the hypothesis that the ethanol-induced transient ciliopathy and subsequent down-regulation of the Shh pathway will decrease downstream cell proliferation genes in the ventral neural tube and expand morphogen gradients that pattern the dorsal neural tube. Following ethanol exposure, genes with known roles in cell proliferation will be assessed using qRT-PCR and the gradients of ventral and dorsal morphogens will be assessed using in situ hybridization. These data will help to determine the precise mechanisms by which ethanol alters development.
Aim 3 is to determine the primary cellular mechanistic events underlying an ethanol-induced transient ciliopathy.
This final Aim will use RNA-seq to determine in an unbiased manner how ethanol disrupts normal ciliogenesis by examining the total transcriptomic profile at several time points immediately following ethanol exposure. We hypothesize that ethanol will alter key ciliogenesis genes; however, using this non-biased approach will aid in identifying other potential changes. Finally, we test the alternative/complementary hypothesis that ethanol alters tubulin post-translational modification, thereby disrupting normal cilia stability and function. Together, these novel experiments will provide fundamental insights into the pathogenic mechanisms underlying the effects of ethanol exposure during development, and propel alcohol research into new primary ciliary-related studies.

Public Health Relevance

The overarching goal of the experiments in this project are to explore the cellular pathogenic mechanisms underlying ethanol?s teratogenic effects in a mouse model of Fetal Alcohol Spectrum Disorders (FASD). We will use molecular biology and cellular imaging techniques to define some of the cellular events that occur following early prenatal ethanol exposure. We will then use RNA-Seq to determine precisely how ethanol exposure perturbs normal cellular functioning. The goal of this work is to increase our understanding of the mechanisms underlying FASD in order to aid in prevention and intervention efforts.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA026068-03
Application #
10061514
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Dunty, Jr, William
Project Start
2018-12-15
Project End
2023-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
3
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Physiology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599