Drug Delivery and Molecular Sensing Research Program: Project Summary The Drug Delivery and Molecular Sensing (DDMS) Program serves as the technology arm of the PCCR, enabling advances in imaging, separations, biosensing and targeted delivery, that can be applied toward basic discoveries and translational efforts in cancer research. DDMS is comprised of 19 faculty members from 11 Purdue academic departments. DDMS provides collective expertise in cellular and tissue imaging, design of drug delivery vehicles and biomimetic platforms for drug testing, and novel bioanalytical methods that couple synergetically with other PCCR Research Programs and that advance our understanding of cancer-driven processes at the molecular level. During this last CCSG funding period, five new members were recruited from the applied sciences and engineering departments, further increasing DDMS's diverse strengths in biomedical imaging, bioanalytical separations, and in vitro testing. DDMS members share a common thread in the invention and application of new technologies for cancer detection, and for enhancing the effects of cancer treatment. DDMS has been highly productive in this regard, having producing 519 papers between 2010 and May 2014, 20% representing collaborative interactions with PCCR members and other NCI-designated cancer centers. DDMS efforts are sustained by $4.1 million of direct cost, peer-reviewed extramural support. DDMS is structured around three Research Themes: (1) Imaging Tools for Cancer Biology and Clinical Cancer Analysis, with breakthroughs in the imaging of advanced brain cancers and in the discovery of new metabolite-based markers associated with cancer progression; (2) Technologies for Investigating Biomolecular Processes and Biomarker Detection, which has produced novel methods for decoding epigenetic pathways and detecting RNA transcripts in live cells, and new platforms for detecting rare cancer cells from clinical blood samples or for evaluating the impact of cancer therapy on resected tissue samples; and (3) Molecular Conjugates and Materials for Drug Delivery, which has discovered and validated molecular delivery systems for new targets at the interface of cancer and immunology, and targeting ligands for different cancer types. All of these research efforts have resulted in new collaborations with PCCR's other Research Programs (e.g. CIS, MC, and CSB) and have been critically supported by PCCR Shared Resources; moreover, several research advances have resulted in the creation of new startup companies and the generation of intellectual property. DDMS Program Leaders have been active in renewing directions by organizing topical workshops, recruiting and providing mentorship to new members with cancer-focused research projects, in cooperation with the PESO Discovery Group, and assembling teams around cancer-related themes that target the submission of multi-investigator research grants. Examples include in vitro testing platforms that can address unmet needs in drug delivery research, spatiotemporal analysis of metabolite-based cancer markers based on multimodal imaging, and 3-D tissue culture models for investigating microenvironmental effects on vasculogenesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA023168-38S1
Application #
9736281
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Ptak, Krzysztof
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
38
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Purdue University
Department
Type
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Alpsoy, Aktan; Dykhuizen, Emily C (2018) Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem 293:3892-3903
Larocque, Elizabeth A; Naganna, N; Opoku-Temeng, Clement et al. (2018) Alkynylnicotinamide-Based Compounds as ABL1 Inhibitors with Potent Activities against Drug-Resistant CML Harboring ABL1(T315I) Mutant Kinase. ChemMedChem 13:1172-1180
Kumari, Rashmi; Silic, Martin R; Jones-Hall, Yava L et al. (2018) Identification of RECK as an evolutionarily conserved tumor suppressor gene for zebrafish malignant peripheral nerve sheath tumors. Oncotarget 9:23494-23504
VerHeul, Ross; Sweet, Craig; Thompson, David H (2018) Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction. Biomater Sci 6:863-876
Poh, Scott; Chelvam, Venkatesh; Ayala-López, Wilfredo et al. (2018) Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine 14:1033-1043
Coleman, Rachel A; Trader, Darci J (2018) A Sensitive High-Throughput Screening Method for Identifying Small Molecule Stimulators of the Core Particle of the Proteasome. Curr Protoc Chem Biol 10:e52
AlAbdi, Lama; He, Ming; Yang, Qianyi et al. (2018) The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem 293:11109-11118
Lee, Hyeong-Min; Clark, Ellen P; Kuijer, M Bram et al. (2018) Characterization and structure-activity relationships of indenoisoquinoline-derived topoisomerase I inhibitors in unsilencing the dormant Ube3a gene associated with Angelman syndrome. Mol Autism 9:45
Liu, Yunhua; Xu, Hanchen; Van der Jeught, Kevin et al. (2018) Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer. J Clin Invest 128:2951-2965
Hall, Hana; Ma, Jingqun; Shekhar, Sudhanshu et al. (2018) Blue light induces a neuroprotective gene expression program in Drosophila photoreceptors. BMC Neurosci 19:43

Showing the most recent 10 out of 436 publications